Data Science at Scale with Python and Dask
Jesse Daniel
Sold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since 14 August 2006
New - Soft cover
Condition: Neu
Quantity: 1 available
Add to basketSold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since 14 August 2006
Condition: Neu
Quantity: 1 available
Add to basketNeuware - SummaryDask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work!Purchase of the print book includes a free Elektronisches Buch in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book.About the TechnologyAn efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease.About the BookData Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker. What's insideWorking with large, structured and unstructured datasetsVisualization with Seaborn and DatashaderImplementing your own algorithmsBuilding distributed apps with Dask DistributedPackaging and deploying Dask appsAbout the ReaderFor data scientists and developers with experience using Python and the PyData stack.About the AuthorJesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company.Table of ContentsPART 1 - The Building Blocks of scalable computingWhy scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying DaskWorking with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask.
Seller Inventory # 9781617295607
Large datasets tend to be distributed, non-uniform, and prone to change. Dask simplifies the process of ingesting, filtering, and transforming data, reducing or eliminating the need for a heavyweight framework like Spark.
Data Science at Scale with Python and Dask teaches readers how to build distributed data projects that can handle huge amounts of data. The book introduces Dask Data Frames and teaches helpful code patterns to streamline the reader’s analysis.
Key Features
Written for data engineers and scientists with experience using Python. Knowledge of the PyData stack (Pandas, NumPy, and Scikit-learn) will be helpful. No experience with low-level parallelism is required.
About the technology
Dask is a self-contained, easily extendible library designed to query, stream, filter, and consolidate huge datasets.
Jesse Daniel has five years of experience writing applications in Python, including three years working with in the PyData stack (Pandas, NumPy, SciPy, Scikit-Learn). Jesse joined the faculty of the University of Denver in 2016 as an adjunct professor of business information and analytics, where he currently teaches a Python for Data Science course.
Jesse Daniel has five years of experience writing applications in Python, including three years working with in the PyData stack (Pandas, NumPy, SciPy, Scikit-Learn). Jesse joined the faculty of the University of Denver in 2016 as an adjunct professor of business information and analytics, where he currently teaches a Python for Data Science course.
"About this title" may belong to another edition of this title.
General Terms and Conditions and Customer Information / Privacy Policy
I. General Terms and Conditions
§ 1 Basic provisions
(1) The following terms and conditions apply to all contracts that you conclude with us as a provider (AHA-BUCH GmbH) via the Internet platforms AbeBooks and/or ZVAB. Unless otherwise agreed, the inclusion of any of your own terms and conditions used by you will be objected to
(2) A consumer within the meaning of the following regulations is any natural person who concludes...
More InformationWe ship your order after we received them
for articles on hand latest 24 hours,
for articles with overnight supply latest 48 hours.
In case we need to order an article from our supplier our dispatch time depends on the reception date of the articles, but the articles will be shipped on the same day.
Our goal is to send the ordered articles in the fastest, but also most efficient and secure way to our customers.