Data Science and Machine Learning (Hardcover)
Zdravko Botev
Sold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since 29 June 2022
New - Hardcover
Condition: New
Ships from United Kingdom to U.S.A.
Quantity: 1 available
Add to basketSold by CitiRetail, Stevenage, United Kingdom
AbeBooks Seller since 29 June 2022
Condition: New
Quantity: 1 available
Add to basketHardcover. Praise for the first edition:In nine succinct but information-packed chapters, the authors provide a logically structured and robust introduction to the mathematical and statistical methods underpinning the still-evolving field of AI and data science.- Joacim Rockloev and Albert A. Gayle, International Journal of Epidemiology, Volume 49, Issue 6This book organizes the algorithms clearly and cleverly. The way the Python code was written follows the algorithm closelyvery useful for readers who wish to understand the rationale and flow of the background knowledge.- Yin-Ju Lai and Chuhsing Kate Hsiao, Biometrics, Volume 77, Issue 4The purpose of Data Science and Machine Learning: Mathematical and Statistical Methods is to provide an accessible, yet comprehensive textbook intended for students interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science.New in the Second EditionThis expanded edition provides updates across key areas of statistical learning: Monte Carlo Methods: A new section introducing regenerative rejection sampling - a simpler alternative to MCMC. Unsupervised Learning: Inclusion of two multidimensional diffusion kernel density estimators, as well as the bandwidth perturbation matching method for the optimal data-driven bandwidth selection. Regression: New automatic bandwidth selection for local linear regression. Feature Selection and Shrinkage: A new chapter introducing the klimax method for model selection in high-dimensions. Reinforcement Learning: A new chapter on contemporary topics such as policy iteration, temporal difference learning, and policy gradient methods, all complete with Python code. Appendices: Expanded treatment of linear algebra, functional analysis, and optimization that includes the coordinate-descent method and the novel MajorizationMinimization method for constrained optimization.Key Features:Focuses on mathematical understanding.Presentation is self-contained, accessible, and comprehensive.Extensive list of exercises and worked-out examples.Many concrete algorithms with Python code.Full color throughout and extensive indexing.A single-counter consecutive numbering of all theorems, definitions, equations, etc., for easier text searches. The purpose of Data Science and Machine Learning: Mathematical and Statistical Methods is to provide an accessible, yet comprehensive textbook intended for students interested in gaining a better understanding of the mathematics and statistics that underpin rich variety of ideas and machine learning algorithms in data science. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Seller Inventory # 9781032488684
Praise for the first edition:
“In nine succinct but information-packed chapters, the authors provide a logically structured and robust introduction to the mathematical and statistical methods underpinning the still-evolving field of AI and data science.”
- Joacim Rocklöv and Albert A. Gayle, International Journal of Epidemiology, Volume 49, Issue 6
“This book organizes the algorithms clearly and cleverly. The way the Python code was written follows the algorithm closely―very useful for readers who wish to understand the rationale and flow of the background knowledge.”
- Yin-Ju Lai and Chuhsing Kate Hsiao, Biometrics, Volume 77, Issue 4
The purpose of Data Science and Machine Learning: Mathematical and Statistical Methods is to provide an accessible, yet comprehensive textbook intended for students interested in gaining a better understanding of the mathematics and statistics that underpin the rich variety of ideas and machine learning algorithms in data science.
New in the Second Edition
This expanded edition provides updates across key areas of statistical learning:
Key Features:
Zdravko I. Botev, PhD, is the pioneer of several modern statistical methodologies, including the diffusion kernel density estimator, the generalized splitting method for rare-event simulation, the bandwidth perturbation matching method, the regenerative rejection sampling method, and the klimax method for feature selection. His contributions to computational statistics and data science have been recognized with honours such as the Christopher Heyde Medal from the Australian Academy of Science and the Gavin Brown Prize from the Australian Mathematical Society.
Dirk P. Kroese, PhD, is an Emeritus Professor in Mathematics and Statistics at the University of Queensland. He is known for his significant contributions to the fields of applied probability, mathematical statistics, machine learning, and Monte Carlo methods. He has published over 140 articles and 7 books. He is a pioneer of the well-known Cross-Entropy (CE) method, which is being used around the world to help solve difficult estimation and optimization problems in science, engineering, and finance.
Thomas Taimre, PhD, is a Senior Lecturer of Mathematics and Statistics at The University of Queensland. His research interests range from applied probability and Monte Carlo methods to applied physics and the remarkably universal self-mixing effect in lasers. He has published over 100 articles, holds a patent, and is the coauthor of Handbook of Monte Carlo Methods (Wiley).
"About this title" may belong to another edition of this title.
Orders can be returned within 30 days of receipt.
If you are a consumer you can cancel the contract in accordance with the following. Consumer means any natural person who is acting for purposes which are outside his trade, business, craft or profession.
INFORMATION REGARDING THE RIGHT OF CANCELLATION
Statutory Right to cancel
You have the right to cancel this contract within 14 days without giving any reason.
The cancellation period will expire after 14 days from the day on which you acquire, or a third party other than the carrier and indicated by you acquires, physical possession of the the last good or the last lot or piece.
To exercise the right to cancel, you must inform us, CitiRetail, ABC Books c/o International Logistics, Unit 2D Gatwick Gate Industrial Estate, RH11 0TG, Lowfield Heath, United Kingdom, 44 020 3290 3457, of your decision to cancel this contract by a clear statement (e.g. a letter sent by post, fax or e-mail). You may use the attached model cancellation form, but it is not obligatory. You can also electronically fill in and submit a clear statement on our website, under "My Purchases" in "My Account". If you use this option, we will communicate to you an acknowledgement of receipt of such a cancellation on a durable medium (e.g. by e-mail) without delay.
To meet the cancellation deadline, it is sufficient for you to send your communication concerning your exercise of the right to cancel before the cancellation period has expired.
Effects of cancellation
If you cancel this contract, we will reimburse to you all payments received from you, including the costs of delivery (except for the supplementary costs arising if you chose a type of delivery other than the least expensive type of standard delivery offered by us).
We may make a deduction from the reimbursement for loss in value of any goods supplied, if the loss is the result of unnecessary handling by you.
We will make the reimbursement without undue delay, and not later than 14 days after the day on which we are informed about your decision to cancel with contract.
We will make the reimbursement using the same means of payment as you used for the initial transaction, unless you have expressly agreed otherwise; in any event, you will not incur any fees as a result of such reimbursement.
We may withhold reimbursement until we have received the goods back or you have supplied evidence of having sent back the goods, whichever is the earliest.
You shall send back the goods or hand them over to us or CitiRetail, ABC Books c/o International Logistics, Unit 2D Gatwick Gate Industrial Estate, RH11 0TG, Lowfield Heath, United Kingdom, 44 020 3290 3457, without undue delay and in any event not later than 14 days from the day on which you communicate your cancellation from this contract to us. The deadline is met if you send back the goods before the period of 14 days has expired. You will have to bear the direct cost of returning the goods. You are only liable for any diminished value of the goods resulting from the handling other than what is necessary to establish the nature, characteristics and functioning of the goods.
Exceptions to the right of cancellation
The right of cancellation does not apply to:
Model withdrawal form
(complete and return this form only if you wish to withdraw from the contract)
To: (CitiRetail, ABC Books c/o International Logistics, Unit 2D Gatwick Gate Industrial Estate, RH11 0TG, Lowfield Heath, United Kingdom, 44 020 3290 3457)
I/We (*) hereby give notice that I/We (*) withdraw from my/our (*) contract of sale of the following goods (*)/for the provision of the following goods (*)/for the provision of the following service (*),
Ordered on (*)/received on (*)
Name of consumer(s)
Address of consumer(s)
Signature of consumer(s) (only if this form is notified on paper)
Date
* Delete as appropriate.
Please note that titles are dispatched from our US, Canadian or Australian warehouses. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 7-14 days.
| Order quantity | 7 to 60 business days | 7 to 14 business days |
|---|---|---|
| First item | £ 37.00 | £ 37.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.