Data Preprocessing in Data Mining (Intelligent Systems Reference Library, 72)
García
Sold by Lucky's Textbooks, Dallas, TX, U.S.A.
AbeBooks Seller since 22 July 2022
New - Hardcover
Condition: New
Quantity: Over 20 available
Add to basketSold by Lucky's Textbooks, Dallas, TX, U.S.A.
AbeBooks Seller since 22 July 2022
Condition: New
Quantity: Over 20 available
Add to basketData Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.
This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.
Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.
This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it's described on the AbeBooks web
sites. Please note that used items may not include access codes or cards, CD's
or other accessories, regardless of what is stated in item title. If you need to
guarantee that these items are included, please purchase a brand new copy.
All requests for refunds and/or returns will be processed in accordance with
AbeBooks policies. If you're dissatisfied with your purchase (Incorrect Book/Not
as Described/Damaged) or if ...
Books ordered via expedited shipping should arrive between 2 and 7 business days after shipment confirmation. Books ordered via standard shipping should arrive between 4 and 14 business days after shipment confirmation.