Data Driven Methods for Civil Structural Health Monitoring and Resilience
New - Soft cover
Condition: New
Ships from Germany to U.S.A.
Quantity: Over 20 available
Add to basketCondition: New
Quantity: Over 20 available
Add to basketDieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Mohammad Noori is a professor of Mechanical Engineering at Cal Poly, San Luis Obispo, a Fellow and Life Member of the American Society of Mechanical Engineering and a recipient of the Japan Society for Promotion of Science Fellowship. His work in nonline.
Seller Inventory # 899831168
Data Driven Methods for Civil Structural Health Monitoring and Resilience: Latest Developments and Applications provides a comprehensive overview of data-driven methods for structural health monitoring (SHM) and resilience of civil engineering structures, mostly based on artificial intelligence or other advanced data science techniques. This allows existing structures to be turned into smart structures, thereby allowing them to provide intelligible information about their state of health and performance on a continuous, relatively real-time basis. Artificial-intelligence-based methodologies are becoming increasingly more attractive for civil engineering and SHM applications; machine learning and deep learning methods can be applied and further developed to transform the available data into valuable information for engineers and decision makers.
Mohammad Noori is a professor of mechanical engineering at California Polytechnic State University, San Luis Obispo; a fellow and life member of the American Society of Mechanical Engineering (ASME); and a recipient of the Japan Society for Promotion of Science Fellowship. His work in nonlinear random vibrations, especially hysteretic systems, in seismic isolation and application of artificial intelligence methods for structural health monitoring is widely cited. He has authored over 300 refereed papers, including over 150 journal articles; has published 15 scientific books, and 31 book chapters in archival volumes; has edited 15 technical books; and has been the guest editor of 15 journal volumes and proceedings. Noori was a co-founder of the National Institute of Aerospace, established through a $379 million 15-year NASA contract in partnership with NASA Langley Research Center. He has also received over $14 million in support of his research from the National Science Foundation (NSF), the Office of Naval Research (ONR), the National Sea Grant, and industry. He has supervised 24 postdoctoral, 26 PhD, and 53 MS projects. He has given over 20 keynote and 76 invited talks and lectures. He is the founding executive editor of a scientific journal, serves on the editorial board or as the associate editor of over 15 other journals, and has been a member of the scientific committee of numerous conferences. He directed the Sensors Program at the NSF in 2014, has been a distinguished visiting professor at several highly ranked universities in Europe and Asia, and serves as the scientific advisor for several organizations and technical firms. He was the dean of engineering at Cal Poly, served as a chaired professor and department head at North Carolina State University and Worcester Polytechnic Institute, and served as the chair of the national committee of mechanical engineering department heads. Noori has developed a unique online course, How to Write an Effective Research Paper, offered by Udemy.com and taken by over 9,000 students worldwide. Noori is an elected member of the Sigma Xi, Pi Tau Sigma, Chi-Epsilon, and Sigma Mu Epsilon honorary research societies. In 1996, Noori was invited by President Clinton’s Special Commission on Critical Infrastructure Protection and presented a testimony as a national expert on that topic. Noori is the founding editor of the Resilience and Sustainability in Civil, Mechanical, Aerospace and Manufacturing Engineering Systems Series of CRC Press/Taylor & Francis Group.
Carlo Rainieri is currently a research scientist at the National Research Council of Italy. His research interests are in the fields of civil structural health monitoring, operational modal analysis, and smart materials. He has been a number of national as well as international research projects focused on civil SHM. He is member of the editorial board of a number of scientific journals, such as Shock and Vibration, Infrastructures, Mathematical Problems in Engineering, and Advances in Civil Engineering, and he serves as guest editor for the Journal of Civil Structural Health Monitoring. Moreover, he was lead editor of the special issue on "Automated Operational Modal Analysis and Its Applications in Structural Health Monitoring" published in Shock and Vibration. In 2019, he received the International Operational Modal Analysis Conference (IOMAC) scientific award for his contribution to the development of operational modal analysis. He was chair of the 8th Civil Structural Health Monitoring Workshop (2021), and he was member of the scientific committee of a number of international conferences in the fields of operational modal analysis and SHM.
He is author of the first book on operational modal analysis that appeared in the literature (Operational Modal Analysis of Civil Engineering Structure: An Introduction and Guide for Applications, Springer) and of about 170 papers published in international peer-reviewed journals and national and international conference proceedings. His main achievements in the field of civil SHM have been the development of data-processing methods for vibration-based SHM applications, including a number of original automated operational modal analysis procedures and novel methods for compensation of environmental and operational influences on modal properties. Dr. Rainieri is also the founder and former CEO of S2X s.r.l. (www.s2x.it), a spin-off company of the University of Molise aimed at providing highly qualified solutions and services in the fields of civil SHM and output-only modal analysis of civil engineering structures.
Marco Domaneschi
is currently an assistant professor at the Department of Structural, Geotechnical and Building Engineering of Politecnico di Torino, where he teaches earthquake engineering and structural design courses. Formerly, he was a research associate and appointed professor of structural engineering at Politecnico di Milano. He is a professional structural engineer for special structures and serves as an R&D consultant in industrial manufacturing and mechanical engineering. He received his PhD from the University of Pavia (2006) and was a visiting researcher at several global universities. He currently serves as an associate editor and editorial board member for several international journals such as the Journal of Vibration and Control (SAGE) and Bridge Engineering (Institution of Civil Engineers, UK). He is also a member of several research associations such as the International Society of Structural Health Monitoring of Intelligent Infrastructure (ISHMII) and the International Association for Bridge Maintenance and Safety (IABMAS). He is also a reviewer for more than 40 international journals. He has been a speaker, sessions chair, editorial board member, and organizer in several international conferences. He received numerous awards for best presentations at conferences, and for research papers and activities. He supports/supported the coordination of several research projects and has/had scientific responsibility in numerous research projects. He has authored over 70 journal articles and 130 international conference papers. His research interests and activities include structural control and health monitoring, resilience and robustness of structures and communities, earthquake engineering and seismic risk, special structures, small- and large-scale simulations, emergency evacuation, and structural collapse analysis.
Vasilis Sarhosis
is an associate professor of structural engineering at the School of Civil Engineering, University of Leeds, UK. He holds both undergraduate and postgraduate degrees in civil engineering from the University of Leeds and worked as a consultant civil engineer in the UK. His main expertise lies in the development of advanced high-fidelity models of nonlinear response to quantify degradation and understand the long-term behavior of existing masonry infrastructure stock (e.g., bridges, tunnels, historic structures, and monuments) subjected to extreme loading conditions. Recently, he pioneered the development of the Cloud2DEM procedure to transform three-dimensional (3D) point clouds of complex structures obtained from photogrammetry and laser scanning to 3D discrete element models. The approach enables the realistic structural analysis of "as-is" masonry infrastructure in an accurate and computationally efficient manner. Dr. Sarhosis is a Chartered Engineer (CEng), Fellow of the Institute of Mechanical Engineering (FIMEchE), and Fellow of the Higher Education Academy (FHEA) in the UK. He is currently chairing the National Scientific Committee on the Analysis and Restoration of Structures of Architectural Heritage (ISCARSAH-UK), which is part of the International Council on Monuments and Sites (ICOMOS). He has edited a book on computational modeling of masonry structures using the discrete element method and published more than 100 peer-reviewed journal articles. His research has been cited more than 1,500 times, and his h-index is 22 (Scopus). For more information, please visit his website (https://www.sarhosis.com/home-1).
Wael A. Altabey
Dr. Wael A. Altabey is a full professor at department of Mechanical Engineering, Alexandria University, Alexandria, Egypt. Before that he was a research associate professor between 2018 to 2024 at International Institute for Urban Systems Engineering (IIUSE), Southeast University, Nanjing, China, and National and Local Joint Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University, Nanjing, Jiangsu, China, after completing a postdoctoral research fellowship for two years (2016-2018).
Since 2016 his researches have focused on the utilization of Artificial Intelligence (AI) based schemes for structural health monitoring (SHM) and Non-Destructive Testing (NDT) for damage classification, detection, diagnosis, prediction, dynamic response analysis, and Reliability evaluation in composite, and steel Structures (such as aircraft, wind turbines, pipes, bridges and industrial machines) at National and Local Joint Engineering Research Center for Basalt Fiber Production and Application Technology, Southeast University, Nanjing, Jiangsu, China. This is the only national R&D platform awarded by the National Development and Reform Commission in this industry with more than 30 national authorized patents. The center's international and national awards indicators have reached international and local leading levels and filling many technical gaps in China.
He participated in several research activities, which achieved from NSFC and private sectors. He listed in Stanford List of World's Top 2% Scientists from 2020, until now. He serves on various technical committees in several international conferences and workshops, guest editor of special Issues in several international scientific journals and on the editorial board of several international scientific journals in the field of artificial intelligence, mechanical, materials, and civil engineering. He a peer reviewer of more than 140 international scientific journals. He is an author and co-author of more than 110 high impact journal papers, 60 scientific conference papers and 50 chapters, 10 academic and research books, patent, and delivered over 40 invited talks.
His research interests: Smart and Nanomaterials; Composite Structures; Structural Health Monitoring (SHM); Artificial Intelligence (AI); Non-Destructive Testing (NDT); Digital Twins Model of Structural Behavior, System Identification; Damage Detection: Vibration-Based Techniques; Fiber Optical Sensing Technique, Structural Control; Structural Resilience and Reliability, Hysteretic Systems, Micro/Nano Electro Mechanical Systems (MEMS/ NEMS), and Energy Harvesting Model for Self-Powered Sensors.
"About this title" may belong to another edition of this title.
Instructions for revocation/
Standard Business Terms and customer information/ data protection declaration
Revocation right for consumers
(A ?consumer? is any natural person who concludes a legal transaction which, to an overwhelming extent, cannot be attributed to either his commercial or independent professional activities.)
Instructions for revocation
Revocation right
You have the right to revoke this contract within one month without specifying any reasons.
The revocation period is one month...
Instructions for revocation/
Standard Business Terms and customer information/ data protection declaration
Revocation right for consumers
(A ‘consumer’ is any natural person who concludes a legal transaction which, to an overwhelming extent, cannot be attributed to either his commercial or independent professional activities.)
Instructions for revocation
Revocation right
You have the right to revoke this contract within one month without specifying any reasons.
The revocation period is one month with effect from the day,
on which you or a third party nominated by you, which is not the carrier, had taken possession of the products, provided you had ordered one or more products within the scope of a standard order and this/these product/products is/are delivered uniformly;
on which you or a third party nominated by you, which is not the carrier, had taken possession of the last product, provided you had ordered several products within the scope of a standard order and these products are delivered separately;
on which you or a third party nominated by you, which is not the carrier, had taken possession of the last part delivery or the last unit, provided you had ordered a product, which is delivered in several part deliveries or units;
In order to exercise your revocation right, you must inform us (Moluna GmbH, Münsterstr. 105, 48268 Greven, Telephone number: 02571/5 69 89 33, Fax number: 02571/5 69 89 30, E-Mail address: abe@moluna.de) of your decision to revoke this contract by means of a clear declaration (e.g. a letter sent via post, fax or email). You can use the enclosed specimen revocation form for this, which however is not mandatory.
In order to safeguard the revocation period, it is sufficient that you send the notification about the exercise of the revocation right before the expiry of the revocation period.
Consequences of the revocation
If you revoke this contract, we shall repay all the payments, which we received from you, including the delivery costs (with the exception of additional costs, which arise from that fact that you selected a form of delivery other than the most reasonable standard delivery offered by us), immediately and at the latest within 14 days from the day on which we received the notification about the revocation of this contract from you. We use the same means of payment, which you had originally used during the original transaction, for this repayment unless expressly agreed otherwise with you; you will not be charged any fees owing to this repayment.
We can refuse the repayment until the products are returned to us or until you have furnished evidence that you have sent the products back to us, depending on whichever is earlier.
You must return or transfer the products to us immediately and, in any case, at the latest within 14 days with effect from the day on which you inform us of the revocation of this contract. The deadline is maintained if you send the products before the expiry of the 14 day deadline.
You bear the direct costs for returning the products.
You must pay for any depreciation of the products only if this depreciation can be attributed to any handling with you that was not necessary for checking the condition, features and functionality of the products.
Criteria for exclusion or expiry
The revocation right is not available for contracts
for delivery of products, which are not prefabricated and for whose manufacturing an individual selection or stipulation by the consumer is important or which are clearly tailored to the personal requirements of the consumer;
for delivery of products, which can spoil quickly or whose use-by date would be exceeded quickly;
for delivery of alcoholic drinks, whose price was agreed at the time of concluding the contract, which however can be delivered 30 days after the conclusion of the contract at the earliest and whose current value depends on the fluctuations in the market, on which the entrepreneur has no influence;
for delivery of newspapers, periodicals or magazines with the exception of subscription contracts.
The revocation right expires prematurely in case of contracts
for delivery of sealed products, which are not suitable for return for reasons of health protection or hygiene if their seal has been removed after the delivery;
for delivery of products if they have been mixed inseparably with other goods after the delivery, owing to their condition;
for delivery of sound or video recording or computer software in a sealed package if the seal has been removed after the delivery.
Specimen - revocation form
(If you wish to revoke the contract, please fill up this form and send it back to us.)
To Moluna GmbH, Engberdingdamm 27, 48268 Greven, Fax number: 02571/5 69 89 30, Email address: abe@moluna.de :
I/we () herewith revoke the contract concluded by me/ us () regarding the purchase of the following products ()/
the provision of the following service ()
Ordered on ()/ received on ()
Name of the consumer(s)
Address of the consumer(s)
Signature of the consumer(s) (only in case of a notification on paper)
Date
(*) Cross out the incorrect option.
II. Kundeninformationen
Moluna GmbH
Engberdingdamm 27
48268 Greven
Deutschland
Telefon: 02571/5698933
E-Mail: abe@moluna.de
Wir sind nicht bereit und nicht verpflichtet, an Streitbeilegungsverfahren vor Verbraucherschlichtungsstellen teilzunehmen.
Die technischen Schritte zum Vertragsschluss, der Vertragsschluss selbst und die Korrekturmöglichkeiten erfolgen nach Maßgabe der Regelungen "Zustandekommen des Vertrages" unserer Allgemeinen Geschäftsbedingungen (Teil I.).
3.1. Vertragssprache ist deutsch .
3.2. Der vollständige Vertragstext wird von uns nicht gespeichert. Vor Absenden der Bestellung können die Vertragsdaten über die Druckfunktion des Browsers ausgedruckt oder elektronisch gesichert werden. Nach Zugang der Bestellung bei uns werden die Bestelldaten, die gesetzlich vorgeschriebenen Informationen bei Fernabsatzverträgen und die Allgemeinen Geschäftsbedingungen nochmals per E-Mail an Sie übersandt.
Die wesentlichen Merkmale der Ware und/oder Dienstleistung finden sich im jeweiligen Angebot.
5.1. Die in den jeweiligen Angeboten angeführten Preise sowie die Versandkosten stellen Gesamtpreise dar. Sie beinhalten alle Preisbestandteile einschließlich aller anfallenden Steuern.
5.2. Die anfallenden Versandkosten sind nicht im Kaufpreis enthalten. Sie sind über eine entsprechend bezeichnete Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot aufrufbar, werden im Laufe des Bestellvorganges gesondert ausgewiesen und sind von Ihnen zusätzlich zu tragen, soweit nicht die versandkostenfreie Lieferung zugesagt ist.
5.3. Die Ihnen zur Verfügung stehenden Zahlungsarten sind unter einer entsprechend bezeichneten Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot ausgewiesen.
5.4. Soweit bei den einzelnen Zahlungsarten nicht anders angegeben, sind die Zahlungsansprüche aus dem geschlossenen Vertrag sofort zur Zahlung fällig.
6.1. Die Lieferbedingungen, der Liefertermin sowie gegebenenfalls bestehende Lieferbeschränkungen finden sich unter einer entsprechend bezeichneten Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot.
Soweit im jeweiligen Angebot oder unter der entsprechend bezeichneten Schaltfläche keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Tagen nach Vertragsschluss (bei vereinbarter Vorauszahlung jedoch erst nach dem Zeitpunkt Ihrer Zahlungsanweisung).
6.2. Soweit Sie Verbraucher sind ist gesetzlich geregelt, dass die Gefahr des zufälligen Untergangs und der zufälligen Verschlechterung der verkauften Sache während der Versendung erst mit der Übergabe der Ware an Sie übergeht, unabhängig davon, ob die Versendung versichert oder unversichert erfolgt. Dies gilt nicht, wenn Sie eigenständig ein nicht vom Unternehmer benanntes Transportunternehmen oder eine sonst zur Ausführung der Versendung bestimmte Person beauftragt haben.
Sind Sie Unternehmer, erfolgt die Lieferung und Versendung auf Ihre Gefahr.
Die Mängelhaftung richtet sich nach der Regelung "Gewährleistung" in unseren Allgemeinen Geschäftsbedingungen (Teil I).
letzte Aktualisierung: 23.10.2019
| Order quantity | 16 to 45 business days | 16 to 45 business days |
|---|---|---|
| First item | £ 42.49 | £ 42.49 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.