Computational Approaches to Predict PKa Values
Paul G. Seybold George C. Shields
Sold by Books Puddle, New York, NY, U.S.A.
AbeBooks Seller since 22 November 2018
New - Hardcover
Condition: New
Quantity: 3 available
Add to basketSold by Books Puddle, New York, NY, U.S.A.
AbeBooks Seller since 22 November 2018
Condition: New
Quantity: 3 available
Add to basketThe pKa of a compound describes its acidity or basicity and, therefore, is one of its most important properties. Its value determines what form of the compound―positive ion, negative ion, or neutral species―will be present under different circumstances. This is crucial to the action and detection of the compound as a drug, pollutant, or other active chemical agent. In many cases it is desirable to predict pKa values prior to synthesizing a compound, and enough is now known about the salient features that influence a molecule’s acidity to make these predictions.
Computational Approaches for the Prediction of pKa Values describes the insights that have been gained on the intrinsic and extrinsic features that influence a molecule’s acidity and discusses the computational methods developed to estimate acidity from a compound’s molecular structure. The authors examine the strengths and weaknesses of the theoretical techniques and show how they have been used to obtain information about the acidities of different classes of chemical compounds.
The book presents theoretical methods for both general and more specific applications, covering methods for various acids in aqueous solutions―including oxyacids and related compounds, nitrogen acids, inorganic acids, and excited-state acids―as well as acids in nonaqueous solvents. It also considers temperature effects, isotope effects, and other important factors that influence pKa. This book provides a resource for predicting pKa values and understanding the bases for these determinations, which can be helpful in designing better chemicals for future uses.
George Shields, Ph.D., is currently a professor of chemistry and dean of the College of Arts and Sciences at Bucknell University. His research uses computational chemistry to investigate atmospheric and biological chemistry.
Paul Seybold, Ph.D., has been has been a faculty member and department chair (1999–2004) in the Department of Chemistry at Wright State University in Ohio and a visiting scholar and visiting professor at a number of universities in the United States and Europe. His research interests center on chemical and biochemical applications of quantum chemistry, molecular structure-activity relationships, luminescence spectroscopy, and cellular automata models of complex systems.
"About this title" may belong to another edition of this title.
We accept return for those books which are received damamged. Though we take appropriate care in packaing to avoid such situation.
Order quantity | 12 to 19 business days | 12 to 14 business days |
---|---|---|
First item | £ 2.97 | £ 5.20 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.