Cellular Automata : Analysis and Applications
Hadeler, Karl-peter; Müller, Johannes
Sold by GreatBookPrices, Columbia, MD, U.S.A.
AbeBooks Seller since 6 April 2009
Used - Soft cover
Condition: Used - As new
Quantity: 4 available
Add to basketSold by GreatBookPrices, Columbia, MD, U.S.A.
AbeBooks Seller since 6 April 2009
Condition: Used - As new
Quantity: 4 available
Add to basketUnread book in perfect condition.
Seller Inventory # 33431792
This book provides an overview of the main approaches used to analyze the dynamics of cellular automata. Cellular automata are an indispensable tool in mathematical modeling. In contrast to classical modeling approaches like partial differential equations, cellular automata are relatively easy to simulate but difficult to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction to cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of various topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification)? These classifications suggest that cellular automata be clustered, similar to the classification of partial differential equations into hyperbolic, parabolic and elliptic equations. This part of the book culminates in the question of whether the properties of cellular automata are decidable. Surjectivity and injectivity are examined, and the seminal Garden of Eden theorems are discussed. In turn, the third part focuses on the analysis of cellular automata that inherit distinct properties, often based on mathematical modeling of biological, physical or chemical systems. Linearity is a concept that allows us to define self-similar limit sets. Models for particle motion show how to bridge the gap between cellular automata and partial differential equations (HPP model and ultradiscrete limit). Pattern formation is related to linear cellular automata, to the Bar-Yam model for the Turing pattern, and Greenberg-Hastings automata for excitable media. In addition, models for sand piles, the dynamicsof infectious d
Karl Peter Hadeler, Dr.rer.nat. 1965 (U. of Hamburg), Habilitation 1967 (U. of Hamburg). In 1963/1964 visiting Moscow State University (MGU), 1968/1969 Visiting Associate Professor,U. of Minnesota. 1970 Associate Professor, Technical Department, U. of Erlangen. 1971 Professor of Mathematics, U. of Tübingen. Retired 2005, then 2005-2011 Non-permanent Professor, Arizona State University. Visiting Professor Aarhus, Nijmegen, Georgia Tech, Emory. 2009 John von Neumann Professorship, Technical University of Munich. Member of Center of Excellence (DFG/German NSF). Research interests: Ordinary and partial differential equations (reaction diffusion equations), delay equations, matrix theory, mathematical biology. Since 2011 about ten publications in mathematics.
Johannes Müller studied in Karlsruhe and Tübingen, where he did his habilitation in 2001. After stays in Utrecht and Cologne, he became head of a research group in the Institute for Biomathematics and Biometry in the Helmholtz Center, Munich. Since 2004 he is teaching as a professor at the Technische Universität München. The research interests of Johannes Müller is on the interface of mathematics and life sciences. In particular his research is concerned with the theory of dynamical systems, cellular automata, and stochastic processes respectively their application."About this title" may belong to another edition of this title.
Company Name: GreatBookPrices
Legal Entity: Expert Trading, LLC
Address: 6310 Stevens Forest, suite 200, Columbia MD 21046
Email address: CustomerService@SuperBookDeals.com
Phone number: 410-964-0026
consumer complaints can be addressed to address above
Registration #: 52-1713923
Authorized representative: Danielle Hainsey
Our warehouses across the globe are fully operational without substantial delays. We are working hard and continue to overcome the daily challenges presented by COVID-19. We appreciate your understanding.
Internal processing of your order will take about 1-2 business days. Please allow an additional 4-14 business days for Media Mail delivery. We have multiple ship-from locations - MD,IL,NJ,UK,IN,NV,TN & GA
Order quantity | 8 to 14 business days | 5 to 14 business days |
---|---|---|
First item | £ 1.98 | £ 1.98 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.