A Calculus for Factorial Arrangements
Rahul Mukerjee
Sold by buchversandmimpf2000, Emtmannsberg, BAYE, Germany
AbeBooks Seller since 23 January 2017
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by buchversandmimpf2000, Emtmannsberg, BAYE, Germany
AbeBooks Seller since 23 January 2017
Condition: New
Quantity: 1 available
Add to basketThis item is printed on demand - Print on Demand Titel. Neuware -Factorial designs were introduced and popularized by Fisher (1935). Among the early authors, Yates (1937) considered both symmetric and asymmetric factorial designs. Bose and Kishen (1940) and Bose (1947) developed a mathematical theory for symmetric priIi't&-powered factorials while Nair and Roo (1941, 1942, 1948) introduced and explored balanced confounded designs for the asymmetric case. Since then, over the last four decades, there has been a rapid growth of research in factorial designs and a considerable interest is still continuing. Kurkjian and Zelen (1962, 1963) introduced a tensor calculus for factorial arrangements which, as pointed out by Federer (1980), represents a powerful statistical analytic tool in the context of factorial designs. Kurkjian and Zelen (1963) gave the analysis of block designs using the calculus and Zelen and Federer (1964) applied it to the analysis of designs with two-way elimination of heterogeneity. Zelen and Federer (1965) used the calculus for the analysis of designs having several classifications with unequal replications, no empty cells and with all the interactions present. Federer and Zelen (1966) considered applications of the calculus for factorial experiments when the treatments are not all equally replicated, and Paik and Federer (1974) provided extensions to when some of the treatment combinations are not included in the experiment. The calculus, which involves the use of Kronecker products of matrices, is extremely helpful in deriving characterizations, in a compact form, for various important features like balance and orthogonality in a general multifactor setting.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 136 pp. Englisch.
Seller Inventory # 9780387971728
"About this title" may belong to another edition of this title.
Widerrufsbelehrung/ Muster-Widerrufsformular/
Allgemeine Geschäftsbedingungen und Kundeninformationen/ Datenschutzerklärung
Widerrufsrecht für Verbraucher
(Verbraucher ist jede natürliche Person, die ein Rechtsgeschäft zu Zwecken abschließt, die überwiegend weder ihrer gewerblichen noch ihrer selbstständigen beruflichen Tätigkeit zugerechnet werden können.)
Widerrufsbelehrung
Widerrufsrecht
Sie haben das Recht, binnen 14 Tagen ohne Angabe von Gründen diesen Vertrag zu widerrufen.
Die Widerrufsfr...
Soweit in der Artikelbeschreibung keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Werktagen nach Vertragsschluss, bei Vorauszahlung erst nach Eingang des vollständigen Kaufpreises und der Versandkosten. Alle Preise inkl. MwSt.