From
AussieBookSeller, Truganina, VIC, Australia
Seller rating 5 out of 5 stars
AbeBooks Seller since 22 June 2007
Paperback. Aggregation processes are studied within a number of different fields--c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, .k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by ir- k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k > 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984).For arbitrary K , the solution ij is not known and in some ca ses may not even exist. Aggregation processes are studied within a number of different fields—c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, . . . k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by irA k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k > 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984). For arbitrary K , the solution ij is not known and in some ca ses may not even exist Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9783540156567
Aggregation processes are studied within a number of different fields--c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, ...k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by ir- k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k > 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984). For arbitrary K , the solution ij is not known and in some ca ses may not even exist.
Title: Branching Processes Applied to Cell Surface ...
Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin
Publication Date: 1985
Binding: Paperback
Condition: new
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9783540156567
Seller: Antiquariat Bookfarm, Löbnitz, Germany
Softcover. VIII, 122 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-01238 3540156569 Sprache: Englisch Gewicht in Gramm: 550. Seller Inventory # 2485095
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1. Introduction.- 2. Branching Processes Applied to the Aggregation of f-Valent Particles.- 3. Multitype Branching Processes.- 4. Aggregate Size Distribution on a Cell Surface.- 5. Gelation and Infinite-Sized Trees.- 6. Post-Gel Relations.- 7. Conclusions a. Seller Inventory # 4882697
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Branching Processes Applied to Cell Surface Aggregation Phenomena | Alan S. Perelson (u. a.) | Taschenbuch | viii | Englisch | 1985 | Springer-Verlag GmbH | EAN 9783540156567 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Seller Inventory # 102151328
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020160689
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783540156567
Quantity: 10 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Aggregation processes are studied within a number of different fields--c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, . . . k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by ir k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984). For arbitrary K , the solution ij is not known and in some ca ses may not even exist. Seller Inventory # 9783540156567
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Aggregation processes are studied within a number of different fields--c- loid chemistry, atmospheric physics, astrophysics, polymer science, and biology, to name only a few. Aggregation pro ces ses involve monomer units (e. g. , biological cells, liquid or colloidal droplets, latex beads, molecules, or even stars) that join together to form polymers or aggregates. A quantitative theory of aggre- tion was first formulated in 1916 by Smoluchowski who proposed that the time e- lution of the aggregate size distribution is governed by the infinite system of differential equations: (1) K . . c. c. - c k = 1, 2, . . . k 1. J 1. J L ~ i+j=k j=l where c is the concentration of k-mers, and aggregates are assumed to form by ir k reversible condensation reactions [i-mer + j-mer -+ (i+j)-mer]. When the kernel K . . can be represented by A + B(i+j) + Cij, with A, B, and C constant; and the in- 1. J itial condition is chosen to correspond to a monodisperse solution (i. e. , c (0) = 1 0, k > 1), then the Smoluchowski equation can be co' a constant; and ck(O) solved exactly (Trubnikov, 1971; Drake, 1972; Ernst, Hendriks, and Ziff, 1982; Dongen and Ernst, 1983; Spouge, 1983; Ziff, 1984). For arbitrary K , the solution ij is not known and in some ca ses may not even exist.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 136 pp. Englisch. Seller Inventory # 9783540156567
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783540156567_new
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 1985 edition. 136 pages. 11.60x8.26x0.31 inches. In Stock. Seller Inventory # x-3540156569