The present text is an extensively revised edition of the textbook first published in 1994. The quantitative treatment of bioprocesses is a central theme in this book. The book has been restructured to make it more easily accessible to the reader, the material has been updated and several new topics have been added in the text. The focus is on the bioreactor and the processes that occur in the reactor, i.e. the coupling between the reactions occurring in the cell and its environment. The microbial cellular metabolism is the starting point in the treatment. Tools for the quantitative analysis of cellular functions - macroscopic mass balancing, thermodynamics of microbial processes, metabolic network analysis and kinetic modelling - are gradually introduced. After analysis of the cellular reactor, the interaction between the cell and its environment is treated in chapters concerning mass transfer and design of bioprocesses. Finally, the complex subject of scale-up is presented.
The present text is a complete revision of the 2nd edition from 2003 of the book with the same title. In recognition of the fast pace at which biotechnology is moving we have rewritten several chapters to include new scientific progress in the field from 2000 to 2010.
More important we have changed the focus of the book to support its use, not only in universities, but also as a guide to design new processes and equipment in the bio-industry.
A new chapter has been included on the prospects of the bio-refinery to replace many of the oil- and gas based processes for production of especially bulk chemicals. This chapter also serves to make students in Chemical Engineering and in the Bio-Sciences enthusiastic about the whole research field.
As in previous editions we hope that the book can be used as textbook for classes, even at the undergraduate level, where chemical engineering students come to work side by side with students from biochemistry and microbiology.
To help the chemical engineering students Chapter 1 includes a brief review of the most important parts of microbial metabolism. In our opinion this review is sufficient to understand microbial physiology at a sufficiently high level to profit from the rest of the book. Likewise the bio-students will not be overwhelmed by mathematics, but since the objective of the book is to teach quantitative process analysis and process design at a hands-on level some mathematics and model analysis is needed. We hope that the about 100 detailed examples and text notes, together with many instructive problems will be sufficient to illustrate how model analysis is used, also in Bio-reaction Engineering.