Auto-Segmentation for Radiation Oncology
Jinzhong Yang
Sold by PBShop.store US, Wood Dale, IL, U.S.A.
AbeBooks Seller since 7 April 2005
New - Soft cover
Condition: New
Quantity: Over 20 available
Add to basketSold by PBShop.store US, Wood Dale, IL, U.S.A.
AbeBooks Seller since 7 April 2005
Condition: New
Quantity: Over 20 available
Add to basketNew Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller Inventory # L0-9780367761226
This book provides a comprehensive introduction to current state-of-the-art auto-segmentation approaches used in radiation oncology for auto-delineation of organs-of-risk for thoracic radiation treatment planning. Containing the latest, cutting edge technologies and treatments, it explores deep-learning methods, multi-atlas-based methods, and model-based methods that are currently being developed for clinical radiation oncology applications. Each chapter focuses on a specific aspect of algorithm choices and discusses the impact of the different algorithm modules to the algorithm performance as well as the implementation issues for clinical use (including data curation challenges and auto-contour evaluations).
This book is an ideal guide for radiation oncology centers looking to learn more about potential auto-segmentation tools for their clinic in addition to medical physicists commissioning auto-segmentation for clinical use.
Features:
Jinzhong Yang earned his BS and MS degrees in Electrical Engineering from the University of
Science and Technology of China, in 1998 and 2001, and his PhD degree in Electrical Engineering
from Lehigh University in 2006. In July 2008, Dr Yang joined the University of Texas MD Anderson
Cancer Center as a Senior Computational Scientist, and since January 2015 he has been an Assistant
Professor of Radiation Physics. Dr Yang is a board-certified medical physicist. His research interest
focuses on deformable image registration and image segmentation for radiation treatment planning
and image-guided adaptive radiotherapy, radiomics for radiation treatment outcome modeling and
prediction, and novel imaging methodologies and applications in radiotherapy.
Greg Sharp earned a PhD in Computer Science and Engineering from the University of Michigan
and is currently Associate Professor in Radiation Oncology at Massachusetts General Hospital
and Harvard Medical School. His primary research interests are in medical image processing and
image-guided radiation therapy, where he is active in the open source software community.
Mark Gooding earned his MEng in Engineering Science in 2000 and DPhil in Medical Imaging
in 2004, both from the University of Oxford. He was employed as a postdoctoral researcher both
in university and hospital settings, where his focus was largely around the use of 3D ultrasound
segmentation in women’s health. In 2009, he joined Mirada Medical Ltd, motivated by a desire to
see technical innovation translated into clinical practice. While there, he has worked on a broad
spectrum of clinical applications, developing algorithms and products for both diagnostic and therapeutic
purposes. If given a free choice of research topic, his passion is for improving image segmentation,
but in practice he is keen to address any technical challenge. Dr Gooding now leads the
research team at Mirada, where in addition to the commercial work he continues to collaborate both
clinically and academically.
"About this title" may belong to another edition of this title.
Returns Policy
We ask all customers to contact us for authorisation should they wish to return their order. Orders returned without authorisation may not be credited.
If you wish to return, please contact us within 14 days of receiving your order to obtain authorisation.
Returns requested beyond this time will not be authorised.
Our team will provide full instructions on how to return your order and once received our returns department will process your refund.
Please note the cost to return any...
Books are shipped from our US or UK warehouses. Delivery estimates allow for delivery from either location.