Synopsis
This book differs from others on Chaos Theory in that it focuses on its applications for understanding complex phenomena. The emphasis is on the interpretation of the equations rather than on the details of the mathematical derivations. The presentation is interdisciplinary in its approach to real-life problems: it integrates nonlinear dynamics, nonequilibrium thermodynamics, information theory, and fractal geometry. An effort has been made to present the material ina reader-friendly manner, and examples are chosen from real life situations. Recent findings on the diagnostics and control of chaos are presented, and suggestions are made for setting up a simple laboratory. Included is a list of topics for further discussion that may serve not only for personal practice or homework, but also as themes for theses, dissertations, and research proposals.
- Includes laboratory experiments Includes applications and case studies related to cell differentiation, EKGs, and immunology
- Presents interdisciplinary applications of chaos theory to complex systems
- Emphasizes the meaning of mathematical equations rather than their derivations
- Features reader friendly presentation with many illustrations and interpretations
- Deals with real life, dissipative systemsIntegrates mathematical theory throughout the text
From the Back Cover
These are exciting times for mathematics, science, and technology. One of the fields that has been receiving great attention is Chaos Theory. Actually, this is not a single discipline, but a potpourri of nonlinear dynamics, nonequilibrium thermodynamics, information theory, and fractal geometry. In the less than two decades that Chaos Theory has become a major part of mathematics and physics, it has become evident that the old paradigm of determinism is insufficient if we are to understand - and perhaps solve - real life problems. Curiously, many of these problems are deterministic, but they are intertwined with randomness and chance. Thus the deterministic laws of physics coexist with the laws of probability. Consequently, uncertainty arises and unpredictability occurs, characteristic of complex systems. In its short lifetime Chaos Theory has already helped us gain insights into problems that in the past we found intractable. Examples of such problems include weather, turbulence, cardiological and neurophysiological episodes, economic restructuring, financial transactions, policy analysis, and decision making. Admittedly, we can as yet solve only relatively simple problems, but much progress has been made and we are now able to observe complex problems from new vantage points that provide us with numerous benefits. One such benefit is the universality of Chaos Theory in its applicability to different situations, which enables us to look at communal problems in an interdisciplinary manner, so that persons of different backgrounds can communicate with one another. Chaos Theory also enables us to reason in a holistic manner, rather than being constrained by simplistic reductionism.Finally, it is gratifying that the mathematics is not intimidating, and one can accomplish much with a personal computer or even a handheld calculator.
"About this title" may belong to another edition of this title.