This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
From the reviews of the second edition:
"In this book we have an exposition of the theory of function fields in one variable from the algebraic point of view ... . The book is carefully written, the concepts are well motivated and plenty of examples help to understand the ideas and proofs and so it can be used as a textbook for an introductory course on the (classical) arithmetic of function fields with an application to coding theory." (Felipe Zaldivar, MAA Online, January, 2009)