Advanced Deep Learning with Python
Vasilev, Ivan
Sold by ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
AbeBooks Seller since 24 March 2009
Used - Soft cover
Condition: Very Good
Quantity: 1 available
Add to basketSold by ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
AbeBooks Seller since 24 March 2009
Condition: Very Good
Quantity: 1 available
Add to basketMay have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.76.
Seller Inventory # G178995617XI4N00
Gain expertise in advanced deep learning domains such as neural networks, meta-learning, graph neural networks, and memory augmented neural networks using the Python ecosystem
In order to build robust deep learning systems, you'll need to understand everything from how neural networks work to training CNN models. In this book, you'll discover newly developed deep learning models, methodologies used in the domain, and their implementation based on areas of application.
You'll start by understanding the building blocks and the math behind neural networks, and then move on to CNNs and their advanced applications in computer vision. You'll also learn to apply the most popular CNN architectures in object detection and image segmentation. Further on, you'll focus on variational autoencoders and GANs. You'll then use neural networks to extract sophisticated vector representations of words, before going on to cover various types of recurrent networks, such as LSTM and GRU. You'll even explore the attention mechanism to process sequential data without the help of recurrent neural networks (RNNs). Later, you'll use graph neural networks for processing structured data, along with covering meta-learning, which allows you to train neural networks with fewer training samples. Finally, you'll understand how to apply deep learning to autonomous vehicles.
By the end of this book, you'll have mastered key deep learning concepts and the different applications of deep learning models in the real world.
This book is for data scientists, deep learning engineers and researchers, and AI developers who want to further their knowledge of deep learning and build innovative and unique deep learning projects. Anyone looking to get to grips with advanced use cases and methodologies adopted in the deep learning domain using real-world examples will also find this book useful. Basic understanding of deep learning concepts and working knowledge of the Python programming language is assumed.
Ivan Vasilev started working on the first open source Java deep learning library with GPU support in 2013. The library was acquired by a German company, where he continued to develop it. He has also worked as a machine learning engineer and researcher in the area of medical image classification and segmentation with deep neural networks. Since 2017, he has been focusing on financial machine learning. He is working on a Python-based platform that provides the infrastructure to rapidly experiment with different machine learning algorithms for algorithmic trading. Ivan holds an MSc degree in artificial intelligence from the University of Sofia, St. Kliment Ohridski.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it's described
on the Abebooks website. If you're dissatisfied with your
purchase (Incorrect Book/Not as Described/Damaged) or if the
order hasn't arrived, you're eligible for a refund within 30
days of the estimated delivery date. If you've changed your
mind about a book that you've ordered, please use the "Ask
bookseller a question link to contact us" and we'll respond
as soon as possible.
All domestic Standard and Expedited shipments are distributed from our warehouses by OSM, then handed off to the USPS for final delivery.
2-Day Shipping is delivered by FedEx, which does not deliver to PO boxes.
International shipments are tendered to the local postal service in the destination country for final delivery – we do not use courier services for international deliveries.