Future-proof your programming career through practical projects designed to grasp the intricacies of LangChain’s components, from core chains to advanced conversational agents. This hands-on book provides Python developers with the necessary skills to develop real-world Large Language Model (LLM)-based Generative AI applications quickly, regardless of their experience level.
Projects throughout the book offer practical LLM solutions for common business issues, such as information overload, internal knowledge access, and enhanced customer communication. Meanwhile, you’ll learn how to optimize workflows, enhance embedding efficiency, select between vector stores, and other optimizations relevant to experienced AI users. The emphasis on real-world applications and practical examples will enable you to customize your own projects to address pain points across various industries.
Developing LangChain-based Generative AI LLM Apps with Python employs a focused toolkit (LangChain, Pinecone, and Streamlit LLM integration) to practically showcase how Python developers can leverage existing skills to build Generative AI solutions. By addressing tangible challenges, you’ll learn-by-be doing, enhancing your career possibilities in today’s rapidly evolving landscape.
What You Will Learn
Who This Book Is For
Python programmers who aim to develop a basic understanding of AI concepts and move from LLM theory to practical Generative AI application development using LangChain; those seeking a structured guide to enhance their careers by learning to create robust, real-world LLM-powered Generative AI applications; data scientists, analysts, and experienced developers new to LLMs.
"synopsis" may belong to another edition of this title.
Rabi Jay has over 15 years of experience driving digital transformation with a unique blend of technical depth and business acumen. His background as a Java and SAP ABAP developer provides insights into the enterprise systems LLMs often needed to integrate with. As a leader in Deloitte’s Digital / Cloud Native practice, he has gained cross-industry experience applying AI solutions, positioning him to identify where LLMs offer the greatest potential for business impact.
He is passionate about making complex technology accessible, leading him to authoring books on SAP NetWeaver Portal Technology and "Enterprise AI in the Cloud" along with regular contributions to industry publications. His role as a technical reviewer for Large Language Model Based Solutions, Modern Python Development Using ChatGPT, and as Vice President at HCL America, focused on digital transformation, demonstrate his active engagement in the LLM field. Additionally, he runs a LinkedIn newsletter ("Enterprise AI Transformation") and free LinkedIn course (“Generative AI for Business Innovation”).
Future-proof your programming career through practical projects designed to grasp the intricacies of LangChain’s components, from core chains to advanced conversational agents. This hands-on book provides Python developers with the necessary skills to develop real-world Large Language Model (LLM)-based Generative AI applications quickly, regardless of their experience level.
Projects throughout the book offer practical LLM solutions for common business issues, such as information overload, internal knowledge access, and enhanced customer communication. Meanwhile, you’ll learn how to optimize workflows, enhance embedding efficiency, select between vector stores, and other optimizations relevant to experienced AI users. The emphasis on real-world applications and practical examples will enable you to customize your own projects to address pain points across various industries.
Developing LangChain-based Generative AI LLM Apps with Python employs a focused toolkit (LangChain, Pinecone, and Streamlit LLM integration) to practically showcase how Python developers can leverage existing skills to build Generative AI solutions. By addressing tangible challenges, you’ll learn-by-be doing, enhancing your career possibilities in today’s rapidly evolving landscape.
You will:
"About this title" may belong to another edition of this title.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 48402335
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 48402335-n
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condition: New. Future-proof your programming career through practical projects designed to grasp the intricacies of LangChain's components, from core chains to advanced conversational agents. This hands-on book provides Python developers with the necessary skills to develop real-world Large Language Model (LLM)-based Generative AI applications quickly, regardless of their experience level.Projects throughout the book offer practical LLM solutions for common business issues, such as information overload, internal knowledge access, and enhanced customer communication. Meanwhile, you'll learn how to optimize workflows, enhance embedding efficiency, select between vector stores, and other optimizations relevant to experienced AI users. The emphasis on real-world applications and practical examples will enable you to customize your own projects to address pain points across various industries.Developing LangChain-based Generative AI LLM Apps with Python employs a focused toolkit (LangChain, Pinecone, and Streamlit LLM integration) to practically showcase how Python developers can leverage existing skills to build Generative AI solutions. By addressing tangible challenges, you'll learn-by-be doing, enhancing your career possibilities in today's rapidly evolving landscape.What You Will Learn Understand different types of LLMs and how to select the right ones for responsible AI.Structure effective prompts.Master LangChain concepts, such as chains, models, memory, and agents.Apply embeddings effectively for search, content comparison, and understanding similarity.Setup and integrate Pinecone vector database for indexing, structuring data, and search.Build Q and A applications for multiple doc formats.Develop multi-step AI workflow apps using LangChain agents.Who This Book Is ForPython programmers who aim to develop a basic understanding of AI concepts and move from LLM theory to practical Generative AI application development using LangChain; those seeking a structured guide to enhance their careers by learning to create robust, real-world LLM-powered Generative AI applications; data scientists, analysts, and experienced developers new to LLMs. Seller Inventory # LU-9798868808814
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
Paperback. Condition: New. Future-proof your programming career through practical projects designed to grasp the intricacies of LangChain's components, from core chains to advanced conversational agents. This hands-on book provides Python developers with the necessary skills to develop real-world Large Language Model (LLM)-based Generative AI applications quickly, regardless of their experience level.Projects throughout the book offer practical LLM solutions for common business issues, such as information overload, internal knowledge access, and enhanced customer communication. Meanwhile, you'll learn how to optimize workflows, enhance embedding efficiency, select between vector stores, and other optimizations relevant to experienced AI users. The emphasis on real-world applications and practical examples will enable you to customize your own projects to address pain points across various industries.Developing LangChain-based Generative AI LLM Apps with Python employs a focused toolkit (LangChain, Pinecone, and Streamlit LLM integration) to practically showcase how Python developers can leverage existing skills to build Generative AI solutions. By addressing tangible challenges, you'll learn-by-be doing, enhancing your career possibilities in today's rapidly evolving landscape.What You Will Learn Understand different types of LLMs and how to select the right ones for responsible AI.Structure effective prompts.Master LangChain concepts, such as chains, models, memory, and agents.Apply embeddings effectively for search, content comparison, and understanding similarity.Setup and integrate Pinecone vector database for indexing, structuring data, and search.Build Q and A applications for multiple doc formats.Develop multi-step AI workflow apps using LangChain agents.Who This Book Is ForPython programmers who aim to develop a basic understanding of AI concepts and move from LLM theory to practical Generative AI application development using LangChain; those seeking a structured guide to enhance their careers by learning to create robust, real-world LLM-powered Generative AI applications; data scientists, analysts, and experienced developers new to LLMs. Seller Inventory # LU-9798868808814
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 48402335
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 48402335-n
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9798868808814
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9798868808814
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9798868808814_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Future-proof your programming career through practical projects designed to grasp the intricacies of LangChain's components, from core chains to advanced conversational agents. This hands-on book provides Python developers with the necessary skills to develop real-world Large Language Model (LLM)-based Generative AI applications quickly, regardless of their experience level.Projects throughout the book offer practical LLM solutions for common business issues, such as information overload, internal knowledge access, and enhanced customer communication. Meanwhile, you'll learn how to optimize workflows, enhance embedding efficiency, select between vector stores, and other optimizations relevant to experienced AI users. The emphasis on real-world applications and practical examples will enable you to customize your own projects to address pain points across various industries.Developing LangChain-based Generative AI LLM Apps with Python employs a focused toolkit (LangChain, Pinecone, and Streamlit LLM integration) to practically showcase how Python developers can leverage existing skills to build Generative AI solutions. By addressing tangible challenges, you'll learn-by-be doing, enhancing your career possibilities in today's rapidly evolving landscape.What You Will Learn Understand different types of LLMs and how to select the right ones for responsible AI.Structure effective prompts.Master LangChain concepts, such as chains, models, memory, and agents.Apply embeddings effectively for search, content comparison, and understanding similarity.Setup and integrate Pinecone vector database for indexing, structuring data, and search.Build Q & A applications for multiple doc formats.Develop multi-step AI workflow apps using LangChain agents.Who This Book Is ForPython programmers who aim to develop a basic understanding of AI concepts and move from LLM theory to practical Generative AI application development using LangChain; those seeking a structured guide to enhance their careers by learning to create robust, real-world LLM-powered Generative AI applications; data scientists, analysts, and experienced developers new to LLMs. 536 pp. Englisch. Seller Inventory # 9798868808814