"synopsis" may belong to another edition of this title.
The book examines the following foundation question: are all theorems in classic mathematics which are expressible in second order arithmetic provable in second order arithmetic? In this book, the author gives a counterexample for this question and isolates this counterexample from Martin-Harrington theorem in set theory. It shows that the statement “Harrington’s principle implies zero sharp” is not provable in second order arithmetic. The book also examines what is the minimal system in higher order arithmetic to show that Harrington’s principle implies zero sharp and the large cardinal strength of Harrington’s principle and its strengthening over second and third order arithmetic.
"About this title" may belong to another edition of this title.
FREE shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-315294
Quantity: 4 available
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-291259
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 122. Seller Inventory # 370731447
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 122. Seller Inventory # 26376395368
Quantity: 4 available
Seller: SMASS Sellers, IRVING, TX, U.S.A.
Condition: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Seller Inventory # ASNT3-291259
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. pp. 122. Seller Inventory # 18376395362
Quantity: 4 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Gödel's true-but-unprovable sentence from the first incompleteness theorem is purely logical in nature, i.e. not mathematically natural or interesting. An interesting problem is to find mathematically natural and interesting statements that are similarly unprovable. A lot of research has since been done in this direction, most notably by Harvey Friedman. A lot of examples of concrete incompleteness with real mathematical content have been found to date. This brief contributes to Harvey Friedman's research program on concrete incompleteness for higher-order arithmetic and gives a specific example of concrete mathematical theorems which is expressible in second-order arithmetic but the minimal system in higher-order arithmetic to prove it is fourth-order arithmetic.This book first examines the following foundational question: are all theorems in classic mathematics expressible in second-order arithmetic provable in second-order arithmetic The author gives a counterexample for this question and isolates this counterexample from the Martin-Harrington Theorem in set theory. It shows that the statement 'Harrington's principle implies zero sharp' is not provable in second-order arithmetic. This book further examines what is the minimal system in higher-order arithmetic to prove the theorem 'Harrington's principle implies zero sharp' and shows that it is neither provable in second-order arithmetic or third-order arithmetic, but provable in fourth-order arithmetic. The book also examines the large cardinal strength of Harrington's principle and its strengthening over second-order arithmetic and third-order arithmetic. 136 pp. Englisch. Seller Inventory # 9789811399480
Quantity: 2 available
Seller: UK BOOKS STORE, London, LONDO, United Kingdom
Condition: New. Brand New! Fast Delivery US Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-10 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability. Seller Inventory # CBS 9789811399480
Quantity: 4 available
Seller: URW Books Store, CASPER, WY, U.S.A.
Condition: Brand New. Brand New! Fast Delivery, Delivery With In 7-10 working Day Only , USA Edition Original Edition. Excellent Quality, Printing In English Language, Quick delivery by FEDEX & DHL. USPS & UPS Act. Our courier service is not available at PO BOX& APO BOX. Ship from India & United States. Seller Inventory # CBSBOOKS31620
Quantity: 4 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Gödel's true-but-unprovable sentence from the first incompleteness theorem is purely logical in nature, i.e. not mathematically natural or interesting. An interesting problem is to find mathematically natural and interesting statements that are similarly unprovable. A lot of research has since been done in this direction, most notably by Harvey Friedman. A lot of examples of concrete incompleteness with real mathematical content have been found to date. This brief contributes to Harvey Friedman's research program on concrete incompleteness for higher-order arithmetic and gives a specific example of concrete mathematical theorems which is expressible in second-order arithmetic but the minimal system in higher-order arithmetic to prove it is fourth-order arithmetic.This book first examines the following foundational question: are all theorems in classic mathematics expressible in second-order arithmetic provable in second-order arithmetic The author gives a counterexample for this question and isolates this counterexample from the Martin-Harrington Theorem in set theory. It shows that the statement 'Harrington's principle implies zero sharp' is not provable in second-order arithmetic. This book further examines what is the minimal system in higher-order arithmetic to prove the theorem 'Harrington's principle implies zero sharp' and shows that it is neither provable in second-order arithmetic or third-order arithmetic, but provable in fourth-order arithmetic. The book also examines the large cardinal strength of Harrington's principle and its strengthening over second-order arithmetic and third-order arithmetic. Seller Inventory # 9789811399480
Quantity: 1 available