Discrete stochastic processes and time series.- Trend definition.- Finite AR(1) stochastic process.- Monte Carlo experiments. - Monte Carlo statistical ensembles.- Numerical generation of trends.- Numerical generation of noisy time series.- Statistical hypothesis testing.- Testing the i.i.d. property.- Polynomial fitting.- Linear regression.- Polynomial fitting.- Polynomial fitting of artificial time series.- An astrophysical example.- Noise smoothing.- Moving average.- Repeated moving average (RMA).- Smoothing of artificial time series.- A financial example.- Automatic estimation of monotonic trends.- Average conditional displacement (ACD) algorithm.- Artificial time series with monotonic trends.- Automatic ACD algorithm.- Evaluation of the ACD algorithm.- A paleoclimatological example.- Statistical significance of the ACD trend.- Time series partitioning.- Partitioning of trends into monotonic segments.- Partitioning of noisy signals into monotonic segments.- Partitioning of a real time series.- Estimation of the ratio between the trend and noise.- Automatic estimation of arbitrary trends.- Automatic RMA (AutRMA).- Monotonic segments of the AutRMA trend.- Partitioning of a financial time series.
"synopsis" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want