1 Introduction.- 1.1 Background Information.- 1.2 The Mathematical Problem ..- 1.3 Controller Designs.- 1.3.1 Linear Controller Design.- 1.3.2 Nonlinear Controller Design.- 1.4 Outline of the Book.- 2 Review of Linear and Nonlinear Controller Designs.- 2.1 Linear Controller Designs.- 2.2 Nonlinear Controller Design.- 2.3 Remarks.- 3 Helicopter Basic Equations of Motion.- 3.1 Helicopter Equations of Motion.- 3.2 Position and Orientation of the Helicopter.- 3.2.1 Helicopter Position Dynamics.- 3.2.2 Helicopter Orientation Dynamics.- 3.3 Complete Helicopter Dynamics.- 3.4 Remarks.- 4 Simplified Rotor Dynamics.- 4.1 Introduction.- 4.2 Blade Motion.- 4.3 Swashplate Mechanism.- 4.4 Fundamental Rotor Aerodynamics.- 4.5 Flapping Equations of Motion.- 4.6 Rotor Tip-Path-Plane Equation.- 4.7 First Order Tip-Path-Plane Equations.- 4.8 Main Rotor Forces and Moments.- 4.9 Remarks.- 5 Frequency Domain System Identification.- 5.1 Mathematical Modeling.- 5.1.1 First Principles Modeling.- 5.1.2 System Identification Modeling.- 5.2 Frequency Domain System Identification.- 5.3 Advantages of the Frequency Domain Identification.- 5.4 Helicopter Identification Challenges.- 5.5 Frequency Response and the Coherence Function.- 5.6 The CIFER c Package.- 5.7 Time History Data and Excitation Inputs.- 5.8 Linearization of the Equations of Motion.- 5.9 Stability and Control Derivatives.- 5.10 Model Identification.- 5.10.1 Experimental Platform.- 5.10.2 Parametrized State Space Model.- 5.10.3 Identification Setup.- 5.10.4 Time Domain Validation.- 5.11 Remarks.- 6 Linear Tracking Controller Design for Small-Scale Unmanned Helicopters.- 6.1 Helicopter Linear Model.- 6.2 Linear Controller Design Outline.- 6.3 Decomposing the System.- 6.4 Velocity and Heading Tracking Controller Design.- 6.4.1 Lateral-Longitudinal Dynamics.- 6.4.2 Yaw-Heave Dynamics.- 6.4.3 Stability of the Complete System Error Dynamics.- 6.5 Position and Heading Tracking.- 6.6 PID Controller Design.- 6.7 Experimental Results.- 6.8 Remarks.- 7 Nonlinear Tracking Controller Design for Unmanned Helicopters.- 7.1 Introduction.- 7.2 Helicopter Nonlinear Model.- 7.2.1 Rigid Body Dynamics.- 7.2.2 ExternalWrench Model.- 7.2.3 Complete Rigid Body Dynamics.- 7.3 Translational Error Dynamics.- 7.4 Attitude Error Dynamics.- 7.4.1 Yaw Error Dynamics.- 7.4.2 Orientation Error Dynamics.- 7.4.3 Angular Velocity Error Dynamics.- 7.5 Stability of the Attitude Error Dynamics.- 7.6 Stability of the Translational Error Dynamics.- 7.7 Numeric Simulation Results.- 7.8 Remarks.- 8 Time Domain Parameter Estimation and Applied Discrete Nonlinear Control for Small-Scale Unmanned Helicopters.- 8.1 Introduction.- 8.2 Discrete System Dynamics.- 8.3 Discrete Backstepping Algorithm.- 8.3.1 Angular Velocity Dynamics.- 8.3.2 Translational Dynamics.- 8.3.3 Yaw Dynamics.- 8.4 Parameter Estimation Using Recursive Least Squares.- 8.5 Parametric Model.- 8.6 Experimental Results.- 8.6.1 Time History Data and Excitation Inputs.- 8.6.2 Validation.- 8.6.3 Control Design.- 8.7 Remarks.- 9 Time Domain System Identification for Small-Scale Unmanned Helicopters Using Fuzzy Models.- 9.1 Introduction.- 9.2 Takagi-Sugeno Fuzzy Models.- 9.3 Proposed Takagi-Sugeno System for Helicopters.- 9.4 Experimental Results.- 9.4.1 Tunning of the Membership Function Parameters.- 9.4.2 Validation.- 10 Comparison Studies.- 10.1 Summary of the Controller Designs.- 10.2 Experimental Results.- 10.3 First Maneuver: Forward Flight.- 10.4 Second Maneuver: Aggressive Forward Flight.- 10.5 Third Maneuver: 8 Shaped Trajectory.- 10.6 Fourth Maneuver: Pirouette Trajectory.- 10.7 Remarks.- 11 Epilogue.- 11.1 Introduction.- 11.2 Advantages and Novelties of the Designs.- 11.3 Testing and Implementation.- 11.4 Remarks.- A Fundamentals of Backstepping Control.- A.1 Integrator Backstepping.- A.2 Example of a Recursive Backstepping Design.- References.
"synopsis" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want