References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
"synopsis" may belong to another edition of this title.
£ 8 shipping within United Kingdom
Destination, rates & speeds£ 21.63 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . Seller Inventory # 5819066
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . . . . . Seller Inventory # 9789048152070
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 3 Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3. 2 Flexible Unipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. 3 Flexible Bipolar Sigmoid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. 4 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3. 4. 1 Generalized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3. 4. 2 Specialized learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. 5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3. 6 Combinations of Flexible Artificial Neural Network Topologies . . . . 79 3. 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 4 Self-Tuning PID Control 85 4. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4. 2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4. 3 Flexible Neural Network as an Indirect Controller . . . . . . . . . . . . . . . 91 4. 4 Self-tunig PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 1 The Tank model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4. 5. 2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. 5. 3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 5 Self-Tuning Computed Torque Control: Part I 107 5. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5. 2 Manipulator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5. 3 Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5. 4 Self-tunig Computed Torque Control . . . . . . . . . . . . . . . . . . . . . . . . . 111 5. 5 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. 5. 1 Simultaneous learning of connection weights and SF para- ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5. 5. 2 Learning of the sigmoid function parameters . . . . . . . . . . . . . 123 Vll 5. 5. 3 Simultaneous learning of SF parameters and output gains 129 5. 6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Chapter 6 Self-Tuning Computed Torque Control: Part II 137 6. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6. 2 Simplification of Flexible Neural Networks . . . . . . . . . . . . . . . . . . . . 138 6. 3 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6. 3. 1 Simultaneous learning of connection weights and sigmoid function parameters . . . . . . . . . . . . . . . . . . . . . .Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 252 pp. Englisch. Seller Inventory # 9789048152070
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 256 pages. 9.25x6.10x0.57 inches. In Stock. Seller Inventory # x-9048152070
Quantity: 2 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA79090481520706
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110336711
Quantity: Over 20 available