From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art.
All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics.
The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have beenanonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.
"synopsis" may belong to another edition of this title.
From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art.
All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics.
The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, inJune 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.
"About this title" may belong to another edition of this title.
Seller: HPB-Red, Dallas, TX, U.S.A.
hardcover. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_433979108
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110335322
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9789048130146
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world's leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton's laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency. 644 pp. Englisch. Seller Inventory # 9789048130146
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. xviii + 624. Seller Inventory # 261401384
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Seller Inventory # 5817571
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. xviii + 624 Illus. Seller Inventory # 6479351
Quantity: 1 available
Seller: preigu, Osnabrück, Germany
Buch. Condition: Neu. Mass and Motion in General Relativity | Luc Blanchet (u. a.) | Buch | xviii | Englisch | 2011 | Springer | EAN 9789048130146 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Seller Inventory # 101543293
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 600 pages. 9.25x6.25x0.75 inches. In Stock. Seller Inventory # x-904813014X
Quantity: 2 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world¿s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art.All contributions reflect the fundamental role of mass in physics, from issues related to Newton¿s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics.The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have beenanonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 644 pp. Englisch. Seller Inventory # 9789048130146