Writing this book, I had in my mind areader trying to get some knowledge of a part of the modern differential geometry. I concentrate myself on the study of sur faces in the Euclidean 3-space, this being the most natural object for investigation. The global differential geometry of surfaces in E3 is based on two classical results: (i) the ovaloids (i.e., closed surfaces with positive Gauss curvature) with constant Gauss or mean curvature are the spheres, (ü) two isometrie ovaloids are congruent. The results presented here show vast generalizations of these facts. Up to now, there is only one book covering this area of research: the Lecture Notes [3] written in the tensor slang. In my book, I am using the machinary of E. Cartan's calculus. It should be equivalent to the tensor calculus; nevertheless, using it I get better results (but, honestly, sometimes it is too complicated). It may be said that almost all results are new and belong to myself (the exceptions being the introductory three chapters, the few classical results and results of my post graduate student Mr. M. ÄFWAT who proved Theorems V.3.1, V.3.3 and VIII.2.1-6).
"synopsis" may belong to another edition of this title.
£ 13.28 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condition: Good. 153 pp., hardcover, ex library else text clean & binding tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Seller Inventory # ZB1208555
Quantity: 1 available
Seller: Antiquariat Bernhardt, Kassel, Germany
gebundene Ausgabe. Condition: Sehr gut. Zust: Gutes Exemplar. 154 S. Englisch 338g. Seller Inventory # 488166
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9789027712950_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Seller Inventory # 5814654
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Writing this book, I had in my mind areader trying to get some knowledge of a part of the modern differential geometry. I concentrate myself on the study of sur faces in the Euclidean 3-space, this being the most natural object for investigation. The global differential geometry of surfaces in E3 is based on two classical results: (i) the ovaloids (i.e., closed surfaces with positive Gauss curvature) with constant Gauss or mean curvature are the spheres, (ü) two isometrie ovaloids are congruent. The results presented here show vast generalizations of these facts. Up to now, there is only one book covering this area of research: the Lecture Notes [3] written in the tensor slang. In my book, I am using the machinary of E. Cartan's calculus. It should be equivalent to the tensor calculus; nevertheless, using it I get better results (but, honestly, sometimes it is too complicated). It may be said that almost all results are new and belong to myself (the exceptions being the introductory three chapters, the few classical results and results of my post graduate student Mr. M. ÄFWAT who proved Theorems V.3.1, V.3.3 and VIII.2.1-6). 160 pp. Englisch. Seller Inventory # 9789027712950
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Writing this book, I had in my mind areader trying to get some knowledge of a part of the modern differential geometry. I concentrate myself on the study of sur faces in the Euclidean 3-space, this being the most natural object for investigation. The global differential geometry of surfaces in E3 is based on two classical results: (i) the ovaloids (i.e., closed surfaces with positive Gauss curvature) with constant Gauss or mean curvature are the spheres, (ü) two isometrie ovaloids are congruent. The results presented here show vast generalizations of these facts. Up to now, there is only one book covering this area of research: the Lecture Notes [3] written in the tensor slang. In my book, I am using the machinary of E. Cartan's calculus. It should be equivalent to the tensor calculus; nevertheless, using it I get better results (but, honestly, sometimes it is too complicated). It may be said that almost all results are new and belong to myself (the exceptions being the introductory three chapters, the few classical results and results of my post graduate student Mr. M. ÄFWAT who proved Theorems V.3.1, V.3.3 and VIII.2.1-6). Seller Inventory # 9789027712950
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -Writing this book, I had in my mind areader trying to get some knowledge of a part of the modern differential geometry. I concentrate myself on the study of sur faces in the Euclidean 3-space, this being the most natural object for investigation. The global differential geometry of surfaces in E3 is based on two classical results: (i) the ovaloids (i.e., closed surfaces with positive Gauss curvature) with constant Gauss or mean curvature are the spheres, (ü) two isometrie ovaloids are congruent. The results presented here show vast generalizations of these facts. Up to now, there is only one book covering this area of research: the Lecture Notes [3] written in the tensor slang. In my book, I am using the machinary of E. Cartan's calculus. It should be equivalent to the tensor calculus; nevertheless, using it I get better results (but, honestly, sometimes it is too complicated). It may be said that almost all results are new and belong to myself (the exceptions being the introductory three chapters, the few classical results and results of my post graduate student Mr. M. ÄFWAT who proved Theorems V.3.1, V.3.3 and VIII.2.1-6).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch. Seller Inventory # 9789027712950
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110331252
Quantity: Over 20 available