This book investigates the pressing issues of learner engagement and academic attrition in online education environments. With a focus on technical learners in Karnataka, India, the research introduces the EDU Insight framework to analyze key behavioral and demographic factors impacting student performance. It proposes a score prediction model using random forest and synthetic data augmentation through tabular GANs to forecast learner outcomes with high accuracy. Additionally, a hybrid ensemble learning approach incorporating weighted classifiers and meta-learners is developed to further refine predictive performance. To support personalized learning, an autoencoder-based collaborative filtering recommendation system is introduced, tailoring course suggestions based on learner behavior and demographics. The study's integrated use of learning analytics and machine learning contributes novel methodologies for predictive accuracy, data privacy, and personalized learning interventions in online education systems.
"synopsis" may belong to another edition of this title.
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9786208454647
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9786208454647
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 152 pp. Englisch. Seller Inventory # 9786208454647
Seller: CitiRetail, Stevenage, United Kingdom
Paperback. Condition: new. Paperback. This book investigates the pressing issues of learner engagement and academic attrition in online education environments. With a focus on technical learners in Karnataka, India, the research introduces the EDU Insight framework to analyze key behavioral and demographic factors impacting student performance. It proposes a score prediction model using random forest and synthetic data augmentation through tabular GANs to forecast learner outcomes with high accuracy. Additionally, a hybrid ensemble learning approach incorporating weighted classifiers and meta-learners is developed to further refine predictive performance. To support personalized learning, an autoencoder-based collaborative filtering recommendation system is introduced, tailoring course suggestions based on learner behavior and demographics. The study's integrated use of learning analytics and machine learning contributes novel methodologies for predictive accuracy, data privacy, and personalized learning interventions in online education systems. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9786208454647
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. LEARNING ANALYTICS FOR ONLINE EDUCATION | Predicting Academic Performance and Enhancing Engagement through Data-Driven Models | Shabnam Ara S. Jahagirdar (u. a.) | Taschenbuch | Englisch | 2025 | LAP LAMBERT Academic Publishing | EAN 9786208454647 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Seller Inventory # 133982203
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware Books on Demand GmbH, Überseering 33, 22297 Hamburg 152 pp. Englisch. Seller Inventory # 9786208454647
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book investigates the pressing issues of learner engagement and academic attrition in online education environments. With a focus on technical learners in Karnataka, India, the research introduces the EDU Insight framework to analyze key behavioral and demographic factors impacting student performance. It proposes a score prediction model using random forest and synthetic data augmentation through tabular GANs to forecast learner outcomes with high accuracy. Additionally, a hybrid ensemble learning approach incorporating weighted classifiers and meta-learners is developed to further refine predictive performance. To support personalized learning, an autoencoder-based collaborative filtering recommendation system is introduced, tailoring course suggestions based on learner behavior and demographics. The study's integrated use of learning analytics and machine learning contributes novel methodologies for predictive accuracy, data privacy, and personalized learning interventions in online education systems. Seller Inventory # 9786208454647