In recent years, research into potential substitutes for carbonaceous anode materials working at higher potentials in Li-ion batteries has picked up steam. It is imperative for safety reasons to swap out the low voltage graphite negative electrode ( 0.4V versus Li+/Li) with alternative materials functioning at greater voltages. The need is met by titanium and niobium oxides with the redox couples Ti4+/Ti3+, Nb5+/Nb4+, and Nb4+/Nb3+ operating at 1.5V vs. Li+/Li. It would be fascinating to compare TiTa2O7's isostructural behaviour to the electrochemical behaviour of TiNb2O7. Investigation of W/Nb and Ti/Nb based phases with shear ReO3 structure is motivated by the potential for accessing the redox couples of Ti/Nb or W/Nb as well as the ease with which Li can be added to or removed from the ReO3 structure.
"synopsis" may belong to another edition of this title.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26397359713
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 400065982
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND. Seller Inventory # 18397359723
Quantity: 4 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In recent years, research into potential substitutes for carbonaceous anode materials working at higher potentials in Li-ion batteries has picked up steam. It is imperative for safety reasons to swap out the low voltage graphite negative electrode ( 0.4V versus Li+/Li) with alternative materials functioning at greater voltages. The need is met by titanium and niobium oxides with the redox couples Ti4+/Ti3+, Nb5+/Nb4+, and Nb4+/Nb3+ operating at 1.5V vs. Li+/Li. It would be fascinating to compare TiTa2O7's isostructural behaviour to the electrochemical behaviour of TiNb2O7. Investigation of W/Nb and Ti/Nb based phases with shear ReO3 structure is motivated by the potential for accessing the redox couples of Ti/Nb or W/Nb as well as the ease with which Li can be added to or removed from the ReO3 structure. 80 pp. Englisch. Seller Inventory # 9786206153917
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In recent years, research into potential substitutes for carbonaceous anode materials working at higher potentials in Li-ion batteries has picked up steam. It is imperative for safety reasons to swap out the low voltage graphite negative electrode ( 0.4V ve. Seller Inventory # 863316559
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -In recent years, research into potential substitutes for carbonaceous anode materials working at higher potentials in Li-ion batteries has picked up steam. It is imperative for safety reasons to swap out the low voltage graphite negative electrode ( 0.4V versus Li+/Li) with alternative materials functioning at greater voltages. The need is met by titanium and niobium oxides with the redox couples Ti4+/Ti3+, Nb5+/Nb4+, and Nb4+/Nb3+ operating at 1.5V vs. Li+/Li. It would be fascinating to compare TiTa2O7's isostructural behaviour to the electrochemical behaviour of TiNb2O7. Investigation of W/Nb and Ti/Nb based phases with shear ReO3 structure is motivated by the potential for accessing the redox couples of Ti/Nb or W/Nb as well as the ease with which Li can be added to or removed from the ReO3 structure.Books on Demand GmbH, Überseering 33, 22297 Hamburg 80 pp. Englisch. Seller Inventory # 9786206153917
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In recent years, research into potential substitutes for carbonaceous anode materials working at higher potentials in Li-ion batteries has picked up steam. It is imperative for safety reasons to swap out the low voltage graphite negative electrode ( 0.4V versus Li+/Li) with alternative materials functioning at greater voltages. The need is met by titanium and niobium oxides with the redox couples Ti4+/Ti3+, Nb5+/Nb4+, and Nb4+/Nb3+ operating at 1.5V vs. Li+/Li. It would be fascinating to compare TiTa2O7's isostructural behaviour to the electrochemical behaviour of TiNb2O7. Investigation of W/Nb and Ti/Nb based phases with shear ReO3 structure is motivated by the potential for accessing the redox couples of Ti/Nb or W/Nb as well as the ease with which Li can be added to or removed from the ReO3 structure. Seller Inventory # 9786206153917
Quantity: 1 available