Microarray technology is used for monitoring thousands of genes at a similar time. This work employs feature selection technique to identify the differently expressed genes by selecting a subset of genes, selecting top ranked genes or removing the redundant genes for better classification model. This work presents the efficiency of three feature selection methods namely one-way ANOVA, Kruskall-Wallis and T-Test for gene selection on three publically available microarray dataset followed by classification of those using Naive Bayes, Binary SVM and Multiclass SVM classification algorithms. The results show the effectiveness of feature selection algorithms on three microarray cancer datasets namely MLL_Leukemia, Lung and SRBCT.
"synopsis" may belong to another edition of this title.
£ 9.54 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Microarray technology is used for monitoring thousands of genes at a similar time. This work employs feature selection technique to identify the differently expressed genes by selecting a subset of genes, selecting top ranked genes or removing the redundant genes for better classification model. This work presents the efficiency of three feature selection methods namely one-way ANOVA, Kruskall-Wallis and T-Test for gene selection on three publically available microarray dataset followed by classification of those using Naive Bayes, Binary SVM and Multiclass SVM classification algorithms. The results show the effectiveness of feature selection algorithms on three microarray cancer datasets namely MLL_Leukemia, Lung and SRBCT. 56 pp. Englisch. Seller Inventory # 9786200434135
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Microarray technology is used for monitoring thousands of genes at a similar time. This work employs feature selection technique to identify the differently expressed genes by selecting a subset of genes, selecting top ranked genes or removing the redundant genes for better classification model. This work presents the efficiency of three feature selection methods namely one-way ANOVA, Kruskall-Wallis and T-Test for gene selection on three publically available microarray dataset followed by classification of those using Naive Bayes, Binary SVM and Multiclass SVM classification algorithms. The results show the effectiveness of feature selection algorithms on three microarray cancer datasets namely MLL_Leukemia, Lung and SRBCT. Seller Inventory # 9786200434135
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: K NirmalakumariK. Nirmalakumari is an Assistant Professor (Level III), Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam.Microarray technology is used for monitoring thousands of genes at a similar time. Th. Seller Inventory # 335816202
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Microarray technology is used for monitoring thousands of genes at a similar time. This work employs feature selection technique to identify the differently expressed genes by selecting a subset of genes, selecting top ranked genes or removing the redundant genes for better classification model. This work presents the efficiency of three feature selection methods namely one-way ANOVA, Kruskall-Wallis and T-Test for gene selection on three publically available microarray dataset followed by classification of those using Naive Bayes, Binary SVM and Multiclass SVM classification algorithms. The results show the effectiveness of feature selection algorithms on three microarray cancer datasets namely MLL_Leukemia, Lung and SRBCT.Books on Demand GmbH, Überseering 33, 22297 Hamburg 56 pp. Englisch. Seller Inventory # 9786200434135
Quantity: 2 available