Due to digital advancements large volumes of data are being generated by the modern applications. In order to accurately categorize the data in these large datasets, clustering algorithms are used. This book presents a literature review of various traditional clustering algorithms and their comparisons from a theoretical perspective. The book also provides the survey of applications of clustering techniques on I) web log data, II) image data and III) biological data. One of the major drawbacks with the traditional clustering algorithms is that they are computationally expensive when the input datasize is too large. To overcome this problem, we also provide a comprehensive study of recent MapReduce based clustering algorithms which extend the traditional counterpart with Map-Reduce programming paradigm. Mainly this book is suitable for researchers who are interested in the field of pattern discovery from large datasets using MapReduce clustering. It will help them carrying out data clustering in distributed environment. More importantly, the issues and open areas discussed in this book will help the researchers in identifying their future direction.
"synopsis" may belong to another edition of this title.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Due to digital advancements large volumes of data are being generated by the modern applications. In order to accurately categorize the data in these large datasets, clustering algorithms are used. This book presents a literature review of various traditional clustering algorithms and their comparisons from a theoretical perspective. The book also provides the survey of applications of clustering techniques on I) web log data, II) image data and III) biological data. One of the major drawbacks with the traditional clustering algorithms is that they are computationally expensive when the input datasize is too large. To overcome this problem, we also provide a comprehensive study of recent MapReduce based clustering algorithms which extend the traditional counterpart with Map-Reduce programming paradigm. Mainly this book is suitable for researchers who are interested in the field of pattern discovery from large datasets using MapReduce clustering. It will help them carrying out data clustering in distributed environment. More importantly, the issues and open areas discussed in this book will help the researchers in identifying their future direction. 132 pp. Englisch. Seller Inventory # 9786200244659
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ansari ZahidDr. Zahid Ansari is a Professor of CSE and Dean (Research) at PA College of Engineering, Mangalore, India. Earlier he was associated with Tata Consultancy Services R&D Center, Pune, GE-Harris Melbourne, Florida USA and US. Seller Inventory # 385886117
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 132 pages. 8.66x5.91x0.30 inches. In Stock. Seller Inventory # zk6200244650
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Due to digital advancements large volumes of data are being generated by the modern applications. In order to accurately categorize the data in these large datasets, clustering algorithms are used. This book presents a literature review of various traditional clustering algorithms and their comparisons from a theoretical perspective. The book also provides the survey of applications of clustering techniques on I) web log data, II) image data and III) biological data. One of the major drawbacks with the traditional clustering algorithms is that they are computationally expensive when the input datasize is too large. To overcome this problem, we also provide a comprehensive study of recent MapReduce based clustering algorithms which extend the traditional counterpart with Map-Reduce programming paradigm. Mainly this book is suitable for researchers who are interested in the field of pattern discovery from large datasets using MapReduce clustering. It will help them carrying out data clustering in distributed environment. More importantly, the issues and open areas discussed in this book will help the researchers in identifying their future direction.Books on Demand GmbH, Überseering 33, 22297 Hamburg 132 pp. Englisch. Seller Inventory # 9786200244659
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Traditional and Map-Reduce Based Clustering for Large Datasets | A Systematic Review | Zahid Ansari (u. a.) | Taschenbuch | 132 S. | Englisch | 2019 | LAP LAMBERT Academic Publishing | EAN 9786200244659 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Seller Inventory # 117239222
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Due to digital advancements large volumes of data are being generated by the modern applications. In order to accurately categorize the data in these large datasets, clustering algorithms are used. This book presents a literature review of various traditional clustering algorithms and their comparisons from a theoretical perspective. The book also provides the survey of applications of clustering techniques on I) web log data, II) image data and III) biological data. One of the major drawbacks with the traditional clustering algorithms is that they are computationally expensive when the input datasize is too large. To overcome this problem, we also provide a comprehensive study of recent MapReduce based clustering algorithms which extend the traditional counterpart with Map-Reduce programming paradigm. Mainly this book is suitable for researchers who are interested in the field of pattern discovery from large datasets using MapReduce clustering. It will help them carrying out data clustering in distributed environment. More importantly, the issues and open areas discussed in this book will help the researchers in identifying their future direction. Seller Inventory # 9786200244659