Extraction of relevant information on a specific query from rapidly growing data is a concern for quiet time in order to scan and analyze data from all the related documents. Therefore, text summarization is paramount research area these days. It is about to find most relevant information from single or multi-documents. A reasonable amount of work is done in this area to overcome extensive searching and to reduce the time required. The knowledge-based and machine learning are the two methods for query-based text summarization where Machine learning approaches are mostly used for calculating probabilistic feature using Natural Language Processing (NLP) tools and techniques for both supervised and unsupervised learning. In the first part of this research work include to identify and analyze machine learning approaches for query-based text summarization for finding a useful summary for the users as specified by their need. In the second part, a comprehensive discussion is done to present the internal working mechanism of machine learning approaches for query-based text summarization.
"synopsis" may belong to another edition of this title.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Extraction of relevant information on a specific query from rapidly growing data is a concern for quiet time in order to scan and analyze data from all the related documents. Therefore, text summarization is paramount research area these days. It is about to find most relevant information from single or multi-documents. A reasonable amount of work is done in this area to overcome extensive searching and to reduce the time required. The knowledge-based and machine learning are the two methods for query-based text summarization where Machine learning approaches are mostly used for calculating probabilistic feature using Natural Language Processing (NLP) tools and techniques for both supervised and unsupervised learning. In the first part of this research work include to identify and analyze machine learning approaches for query-based text summarization for finding a useful summary for the users as specified by their need. In the second part, a comprehensive discussion is done to present the internal working mechanism of machine learning approaches for query-based text summarization. 80 pp. Englisch. Seller Inventory # 9786139452828
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26389330023
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 390269880
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND. Seller Inventory # 18389330029
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Zainab ZarahZarah Zainab is Bachelor of Science in Computer Science. He graduated from the City University of Science and Information TechnologyPeshawar, Pakistan, Department of Computer Science. February, 2019.Extraction of rele. Seller Inventory # 282071468
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Extraction of relevant information on a specific query from rapidly growing data is a concern for quiet time in order to scan and analyze data from all the related documents. Therefore, text summarization is paramount research area these days. It is about to find most relevant information from single or multi-documents. A reasonable amount of work is done in this area to overcome extensive searching and to reduce the time required. The knowledge-based and machine learning are the two methods for query-based text summarization where Machine learning approaches are mostly used for calculating probabilistic feature using Natural Language Processing (NLP) tools and techniques for both supervised and unsupervised learning. In the first part of this research work include to identify and analyze machine learning approaches for query-based text summarization for finding a useful summary for the users as specified by their need. In the second part, a comprehensive discussion is done to present the internal working mechanism of machine learning approaches for query-based text summarization.Books on Demand GmbH, Überseering 33, 22297 Hamburg 80 pp. Englisch. Seller Inventory # 9786139452828
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Extraction of relevant information on a specific query from rapidly growing data is a concern for quiet time in order to scan and analyze data from all the related documents. Therefore, text summarization is paramount research area these days. It is about to find most relevant information from single or multi-documents. A reasonable amount of work is done in this area to overcome extensive searching and to reduce the time required. The knowledge-based and machine learning are the two methods for query-based text summarization where Machine learning approaches are mostly used for calculating probabilistic feature using Natural Language Processing (NLP) tools and techniques for both supervised and unsupervised learning. In the first part of this research work include to identify and analyze machine learning approaches for query-based text summarization for finding a useful summary for the users as specified by their need. In the second part, a comprehensive discussion is done to present the internal working mechanism of machine learning approaches for query-based text summarization. Seller Inventory # 9786139452828
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Query Based Text Summarization using Machine learning Approach | Learning Approaches | Zarah Zainab (u. a.) | Taschenbuch | 80 S. | Englisch | 2019 | LAP LAMBERT Academic Publishing | EAN 9786139452828 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Seller Inventory # 115964635
Seller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Extraction of relevant information on a specific query from rapidly growing data is a concern for quiet time in order to scan and analyze data from all the related documents. Therefore, text summarization is paramount research area these days. It is about to find most relevant information from single or multi-documents. A reasonable amount of work is done in this area to overcome extensive searching and to reduce the time required. The knowledge-based and machine learning are the two methods for query-based text summarization where Machine learning approaches are mostly used for calculating probabilistic feature using Natural Language Processing (NLP) tools and techniques for both supervised and unsupervised learning. In the first part of this research work include to identify and analyze machine learning approaches for query-based text summarization for finding a useful summary for the users as specified by their need. In the second part, a comprehensive discussion is done to present the internal working mechanism of machine learning approaches for query-based text summarization. Seller Inventory # 34147186/2
Seller: Buchpark, Trebbin, Germany
Condition: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | Extraction of relevant information on a specific query from rapidly growing data is a concern for quiet time in order to scan and analyze data from all the related documents. Therefore, text summarization is paramount research area these days. It is about to find most relevant information from single or multi-documents. A reasonable amount of work is done in this area to overcome extensive searching and to reduce the time required. The knowledge-based and machine learning are the two methods for query-based text summarization where Machine learning approaches are mostly used for calculating probabilistic feature using Natural Language Processing (NLP) tools and techniques for both supervised and unsupervised learning. In the first part of this research work include to identify and analyze machine learning approaches for query-based text summarization for finding a useful summary for the users as specified by their need. In the second part, a comprehensive discussion is done to present the internal working mechanism of machine learning approaches for query-based text summarization. Seller Inventory # 34147186/1