Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincare--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincare-Riemann--Hilbert boundary-value problem. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincare--Riemann--Hilbert boundary-value problem allows us to construct effective estimates that describe the behaviour of the zeros of the zeta function very well.
"synopsis" may belong to another edition of this title.
£ 9.23 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincare--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincare-Riemann--Hilbert boundary-value problem. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincare--Riemann--Hilbert boundary-value problem allows us to construct effective estimates that describe the behaviour of the zeros of the zeta function very well. 52 pp. Englisch. Seller Inventory # 9786138825197
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincare--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincare-Riemann--Hilbert boundary-value problem. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincare--Riemann--Hilbert boundary-value problem allows us to construct effective estimates that describe the behaviour of the zeros of the zeta function very well. Seller Inventory # 9786138825197
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 385853107
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 52. Seller Inventory # 385175955
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 52. Seller Inventory # 26377679436
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 52. Seller Inventory # 18377679430
Quantity: 4 available