Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind ¿ von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen ¿ wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen ¿Chris hat den Kochbuchcharakter seines Buchs genutzt, um nicht nur eine Referenz für erfahrene Profis zu bieten, sondern auch eine leicht zugängliche Reihe von kleinen Tutorials, die Anfänger schätzen werden. Dieses Buch ist eine wertvolle Ressource, egal ob man sein Wissen vor einem Vorstellungsgespräch als Data Scientist auffrischen möchte oder eine prägnante und dennoch gründliche Referenz für den Schreibtisch sucht.¿ ¿ Justin Bozonier Leitender Data Scientist bei Grubhub
"synopsis" may belong to another edition of this title.
Seller: WeBuyBooks, Rossendale, LANCS, United Kingdom
Condition: Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Seller Inventory # wbs2443902733
Quantity: 1 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: Used - Good. Used Book. Shipped from UK. Established seller since 2000. Seller Inventory # P2-9783960090908
Quantity: 1 available
Seller: medimops, Berlin, Germany
Condition: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Seller Inventory # M03960090900-V
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 35450699
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-LBR-9783960090908
Quantity: 3 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 35450699-n
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 35450699-n
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 35450699
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. German language. 9.30x6.50x1.00 inches. In Stock. Seller Inventory # __3960090900
Quantity: 2 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. Neuware -Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind - von der Vorverarbeitung der Daten bis zum Deep Learning.Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen - wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr.Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln.In diesem Kochbuch finden Sie Rezepte für:- Vektoren, Matrizen und Arrays- den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit- das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl- Modellbewertung und -auswahl- lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn- Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze- das Speichern und Laden von trainierten Modellen'Chris hat den Kochbuchcharakter seines Buchs genutzt, um nicht nur eine Referenz für erfahrene Profis zu bieten, sondern auch eine leicht zugängliche Reihe von kleinen Tutorials, die Anfänger schätzen werden. Dieses Buch ist eine wertvolle Ressource, egal ob man sein Wissen vor einem Vorstellungsgespräch als Data Scientist auffrischen möchte oder eine prägnante und dennoch gründliche Referenz für den Schreibtisch sucht.'- Justin BozonierLeitender Data Scientist bei Grubhub 348 pp. Deutsch. Seller Inventory # 9783960090908