Modeling is a helpful tool that might be used to predict the Dissolved Oxygen (DO) level of a lake. Most ecological systems are complex and unstable. In case black box models might be essential instead of deterministic ones. DO in Eymir Lake was modeled by using both Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS). Phosphate, Orthophospate, pH, Chlorophyll-a, Temperature, Alkalinity, Nitrate,Total Kjeldahl Nitrogen, Wind, Precipitation, Air Temperature were the input parameters of ANN and ANFIS. The aims of these modeling studies were: developing models with ANN to predict DO level in Lake Eymir with high fidelity to actual DO data, to compare the success of ANN and ANFIS on DO modeling, to determine the degree of dependence of different parameters on DO. “Matlab R 2007b” software was used. The results indicated that ANN has high prediction capacity of DO and ANFIS has low with respect to ANN. Failure of ANFIS was due to low functionality of Matlab ANFIS. For ANN Modeling effect of meteorological data on DO data on surface of the lake was successfully described and summer month super saturation DO concentrations were successfully predicted.
"synopsis" may belong to another edition of this title.
Muhittin ASLAN has received his Master of Science Degree o Environmental Engineering in 2008 from METU. Currently he is working for Ministry of Environment and Urbanisation of Turkey. Also he has doctorate studies regarding social environmental sciences, environmental law and international relations in the scope of environmental politics of EU.
"About this title" may belong to another edition of this title.
£ 8 shipping within United Kingdom
Destination, rates & speeds£ 9.24 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modeling is a helpful tool that might be used to predict the Dissolved Oxygen (DO) level of a lake. Most ecological systems are complex and unstable. In case black box models might be essential instead of deterministic ones. DO in Eymir Lake was modeled by using both Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS). Phosphate, Orthophospate, pH, Chlorophyll-a, Temperature, Alkalinity, Nitrate,Total Kjeldahl Nitrogen, Wind, Precipitation, Air Temperature were the input parameters of ANN and ANFIS. The aims of these modeling studies were: developing models with ANN to predict DO level in Lake Eymir with high fidelity to actual DO data, to compare the success of ANN and ANFIS on DO modeling, to determine the degree of dependence of different parameters on DO. Matlab R 2007b software was used. The results indicated that ANN has high prediction capacity of DO and ANFIS has low with respect to ANN. Failure of ANFIS was due to low functionality of Matlab ANFIS. For ANN Modeling effect of meteorological data on DO data on surface of the lake was successfully described and summer month super saturation DO concentrations were successfully predicted. 140 pp. Englisch. Seller Inventory # 9783846537084
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Modeling is a helpful tool that might be used to predict the Dissolved Oxygen (DO) level of a lake. Most ecological systems are complex and unstable. In case black box models might be essential instead of deterministic ones. DO in Eymir Lake was modeled by using both Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS). Phosphate, Orthophospate, pH, Chlorophyll-a, Temperature, Alkalinity, Nitrate,Total Kjeldahl Nitrogen, Wind, Precipitation, Air Temperature were the input parameters of ANN and ANFIS. The aims of these modeling studies were: developing models with ANN to predict DO level in Lake Eymir with high fidelity to actual DO data, to compare the success of ANN and ANFIS on DO modeling, to determine the degree of dependence of different parameters on DO. Matlab R 2007b software was used. The results indicated that ANN has high prediction capacity of DO and ANFIS has low with respect to ANN. Failure of ANFIS was due to low functionality of Matlab ANFIS. For ANN Modeling effect of meteorological data on DO data on surface of the lake was successfully described and summer month super saturation DO concentrations were successfully predicted. Seller Inventory # 9783846537084
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Aslan MuhittinMuhittin ASLAN has received his Master of Science Degree o Environmental Engineering in 2008 from METU. Currently he is working for Ministry of Environment and Urbanisation of Turkey. Also he has doctorate studies regar. Seller Inventory # 5497496
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 140 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Seller Inventory # 95163159
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 140. Seller Inventory # 2698282696
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 1898282690
Quantity: 4 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA758384653708X6
Quantity: 1 available