Les Algorithmes Evolutionnaires (AEs) représentent une famille d’algorithmes fondés sur la théorie Darwinienne. Ils font évoluer une population d’individus vers l’optimum d'une fonction. Ils sont caractérisés par leur capacité de diriger la recherche vers les zones prometteuses. Cependant, ces métaheuristiques possèdent quelques faiblesses. Une façon de les surmonter est de combiner ces AEs avec d’autres méthodes de recherche, ce phénomène est appelé l’hybridation. La plus connue est l’hybridation avec les méthodes de recherche locale (RL) qui ont la capacité à détecter les optima locaux. Le résultat d’une telle hybridation est appelé Algorithme Mémétique (AM). Plusieurs AMs ont montré de très bons résultats dans la résolution de problèmes réels dans un cadre mono-objectif. C’est pour cette raison, la communauté scientifique a opté vers le développement d’AMs pour le cadre multi-objectif. La plupart des AMs multi-objectifs visent la résolution des problèmes réels plutôt que le développement du cadre conceptuel de tels algorithmes. Dans ce travail, nous présentons les problèmes de conception des AMs multi-objectifs. Ainsi, nous développons un AM multi-objectif (PHC-NSGA-II)
"synopsis" may belong to another edition of this title.
Slim Bechikh received the B.S. degree in computer science applied to management and the M.S. degree in modeling from the High Institute of Management of Tunis, University of Tunis, Tunis, Tunisia, in2006 and 2008, respectively. He is currently working towards the Ph.D. degree within the SOIE Laboratory, Tunisia.
"About this title" may belong to another edition of this title.
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9783841789655
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9783841789655
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783841789655_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9783841789655
Quantity: 10 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Les Algorithmes Evolutionnaires (AEs) représentent une famille d'algorithmes fondés sur la théorie Darwinienne. Ils font évoluer une population d'individus vers l'optimum d'une fonction. Ils sont caractérisés par leur capacité de diriger la recherche vers les zones prometteuses. Cependant, ces métaheuristiques possèdent quelques faiblesses. Une façon de les surmonter est de combiner ces AEs avec d'autres méthodes de recherche, ce phénomène est appelé l'hybridation. La plus connue est l'hybridation avec les méthodes de recherche locale (RL) qui ont la capacité à détecter les optima locaux. Le résultat d'une telle hybridation est appelé Algorithme Mémétique (AM). Plusieurs AMs ont montré de très bons résultats dans la résolution de problèmes réels dans un cadre mono-objectif. C'est pour cette raison, la communauté scientifique a opté vers le développement d'AMs pour le cadre multi-objectif. La plupart des AMs multi-objectifs visent la résolution des problèmes réels plutôt que le développement du cadre conceptuel de tels algorithmes. Dans ce travail, nous présentons les problèmes de conception des AMs multi-objectifs. Ainsi, nous développons un AM multi-objectif (PHC-NSGA-II) 104 pp. Französisch. Seller Inventory # 9783841789655
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 104. Seller Inventory # 26128038679
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Bechikh SlimSlim Bechikh received the B.S. degree in computer science applied to management and the M.S. degree in modeling from the High Institute of Management of Tunis, University of Tunis, Tunis, Tunisia, in2006 and 2008, respect. Seller Inventory # 5442487
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 104 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Seller Inventory # 131467464
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 104. Seller Inventory # 18128038685
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Les Algorithmes Evolutionnaires (AEs) représentent une famille d¿algorithmes fondés sur la théorie Darwinienne. Ils font évoluer une population d¿individus vers l¿optimum d'une fonction. Ils sont caractérisés par leur capacité de diriger la recherche vers les zones prometteuses. Cependant, ces métaheuristiques possèdent quelques faiblesses. Une façon de les surmonter est de combiner ces AEs avec d¿autres méthodes de recherche, ce phénomène est appelé l¿hybridation. La plus connue est l¿hybridation avec les méthodes de recherche locale (RL) qui ont la capacité à détecter les optima locaux. Le résultat d¿une telle hybridation est appelé Algorithme Mémétique (AM). Plusieurs AMs ont montré de très bons résultats dans la résolution de problèmes réels dans un cadre mono-objectif. C¿est pour cette raison, la communauté scientifique a opté vers le développement d¿AMs pour le cadre multi-objectif. La plupart des AMs multi-objectifs visent la résolution des problèmes réels plutôt que le développement du cadre conceptuel de tels algorithmes. Dans ce travail, nous présentons les problèmes de conception des AMs multi-objectifs. Ainsi, nous développons un AM multi-objectif (PHC-NSGA-II)VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 104 pp. Französisch. Seller Inventory # 9783841789655