This monogram evaluates the important physical properties of volume holographic recording in sufficiently thick photo-polymer materials that have provided a promising alternative for nonvolatile (WORM) systems. Unlike prior studies that had focused on diffusion limited volume grating formation during illumination, ignoring any post-exposure grating development, this work investigated the complete dynamics of volume holographic recording including post-exposure grating development . In a material utilizing cationing-ring-opening polymerization, the significant post-exposure grating development observed at high I recordings, was identified to allow eventually for strong final gratings (3-5 cm/mJ) without diffusion limitations. Based on these observations, a comprehensive new physical model was developed to describe holographic recording utilizing photo-initiated, rather than photo-induced, polymerization, which accounted accurately for the physical recording properties that allow for efficient nonvolatile holographic digital storage in these photopolymer media.
"synopsis" may belong to another edition of this title.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monogram evaluates the important physical properties of volume holographic recording in sufficiently thick photo-polymer materials that have provided a promising alternative for nonvolatile (WORM) systems. Unlike prior studies that had focused on diffusion limited volume grating formation during illumination, ignoring any post-exposure grating development, this work investigated the complete dynamics of volume holographic recording including post-exposure grating development . In a material utilizing cationing-ring-opening polymerization, the significant post-exposure grating development observed at high I recordings, was identified to allow eventually for strong final gratings (3-5 cm/mJ) without diffusion limitations. Based on these observations, a comprehensive new physical model was developed to describe holographic recording utilizing photo-initiated, rather than photo-induced, polymerization, which accounted accurately for the physical recording properties that allow for efficient nonvolatile holographic digital storage in these photopolymer media. 144 pp. Englisch. Seller Inventory # 9783838337821
Quantity: 2 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -This monogram evaluates the important physical properties of volume holographic recording in sufficiently thick photo-polymer materials that have provided a promising alternative for nonvolatile (WORM) systems. Unlike prior studies that had focused on diffusion limited volume grating formation during illumination, ignoring any post-exposure grating development, this work investigated the complete dynamics of volume holographic recording including post-exposure grating development . In a material utilizing cationing-ring-opening polymerization, the significant post-exposure grating development observed at high I recordings, was identified to allow eventually for strong final gratings (3-5 cm/mJ) without diffusion limitations. Based on these observations, a comprehensive new physical model was developed to describe holographic recording utilizing photo-initiated, rather than photo-induced, polymerization, which accounted accurately for the physical recording properties that allow for efficient nonvolatile holographic digital storage in these photopolymer media.Books on Demand GmbH, Überseering 33, 22297 Hamburg 144 pp. Englisch. Seller Inventory # 9783838337821
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This monogram evaluates the important physical properties of volume holographic recording in sufficiently thick photo-polymer materials that have provided a promising alternative for nonvolatile (WORM) systems. Unlike prior studies that had focused on diffusion limited volume grating formation during illumination, ignoring any post-exposure grating development, this work investigated the complete dynamics of volume holographic recording including post-exposure grating development . In a material utilizing cationing-ring-opening polymerization, the significant post-exposure grating development observed at high I recordings, was identified to allow eventually for strong final gratings (3-5 cm/mJ) without diffusion limitations. Based on these observations, a comprehensive new physical model was developed to describe holographic recording utilizing photo-initiated, rather than photo-induced, polymerization, which accounted accurately for the physical recording properties that allow for efficient nonvolatile holographic digital storage in these photopolymer media. Seller Inventory # 9783838337821
Quantity: 1 available
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Volume Holographic Recording Utilizing Photo-Initiated Polymerization | Volume Holographic Recording Utilizing Photo-Initiated Polymerization For Nonvolatile Digital Data Storage | Loukas Paraschis | Taschenbuch | 144 S. | Englisch | 2010 | LAP LAMBERT Academic Publishing | EAN 9783838337821 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Seller Inventory # 101095396
Quantity: 5 available