Since the early 1960s, the mathematical theory of variational inequalities has been under rapid development, based on complex analysis and strongly influenced by 'real-life' application. Many, but of course not all, moving free (Le. , a priori un known) boundary problems originating from engineering and economic applica tions can directly, or after a transformation, be formulated as variational inequal ities. In this work we investigate an evolutionary variational inequality with a memory term which is, as a fixed domain formulation, the result of the application of such a transformation to a degenerate moving free boundary problem. This study includes mathematical modelling, existence, uniqueness and regularity results, numerical analysis of finite element and finite volume approximations, as well as numerical simulation results for applications in polymer processing. Essential parts of these research notes were developed during my work at the Chair of Applied Mathematics (LAM) of the Technical University Munich. I would like to express my sincerest gratitude to K. -H. Hoffmann, the head of this chair and the present scientific director of the Center of Advanced European Studies and Research (caesar), for his encouragement and support. With this work I am fol lowing a general concept of Applied Mathematics to which he directed my interest and which, based on application problems, comprises mathematical modelling, mathematical and numerical analysis, computational aspects and visualization of simulation results.
"synopsis" may belong to another edition of this title.
This monograph is devoted to the study of an evolutionary variational inequality approach to a degenerate moving free-boundary problem. The inequality approach of obstacle type results from the applications of an integral transformation. It takes an intermediate position between elliptic and parabolic inequalities and comprises an elliptic differential operator, a memory term and time-dependent convex constraint sets. The study of such inequality problems is motivated by applications to injection and compression moulding, to electro-chemical machining and other quasi-stationary Stefan type problems. The mathematical analysis of the problem covers existence, uniqueness, regularity and time evolution of the solution. This is carried out in the framework of the variational inequality theory. The numerical solution in two and three space dimensions is discussed using both finite element and finite volume approximations. Finally, a description of injection and compression moulding is presented in terms of different mathematical models, a generalized Hele-Shaw flow, a distance concept and Navier-Stokes flow.
This volume is primarily addressed to applied mathematicians working in the field of non-linear partial differential equations and their applications, especially those concerned with numerical aspects. However, the book should also be useful for scientists from the application areas - in particular, applied scientists from engineering and physics."About this title" may belong to another edition of this title.
£ 15.54 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: Antiquariat Bookfarm, Löbnitz, Germany
Hardcover. 294 S. Ex-library with stamp and library-signature in good condition, some traces of use. C-03934 9783764365820 Sprache: Englisch Gewicht in Gramm: 1050. Seller Inventory # 2489868
Quantity: 1 available
Seller: CSG Onlinebuch GMBH, Darmstadt, Germany
Gebunden. Condition: Gut. Gebraucht - Gut Zustand: Gut, Mängelexemplar, X, 294 pp. Seller Inventory # 16869
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783764365820_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This monograph studies an evolutionary variational inequality approach to a degenerate moving free boundary problem. It takes an intermediate position between elliptic and parabolic inequalities and comprises an elliptic differential operator, a memory t. Seller Inventory # 5279451
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Since the early 1960s, the mathematical theory of variational inequalities has been under rapid development, based on complex analysis and strongly influenced by 'real-life' application. Many, but of course not all, moving free (Le. , a priori un known) boundary problems originating from engineering and economic applica tions can directly, or after a transformation, be formulated as variational inequal ities. In this work we investigate an evolutionary variational inequality with a memory term which is, as a fixed domain formulation, the result of the application of such a transformation to a degenerate moving free boundary problem. This study includes mathematical modelling, existence, uniqueness and regularity results, numerical analysis of finite element and finite volume approximations, as well as numerical simulation results for applications in polymer processing. Essential parts of these research notes were developed during my work at the Chair of Applied Mathematics (LAM) of the Technical University Munich. I would like to express my sincerest gratitude to K. -H. Hoffmann, the head of this chair and the present scientific director of the Center of Advanced European Studies and Research (caesar), for his encouragement and support. With this work I am fol lowing a general concept of Applied Mathematics to which he directed my interest and which, based on application problems, comprises mathematical modelling, mathematical and numerical analysis, computational aspects and visualization of simulation results. Seller Inventory # 9783764365820
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783764365820
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 308. Seller Inventory # 26355101
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 308 Illus. Seller Inventory # 7525570
Quantity: 4 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Since the early 1960s, the mathematical theory of variational inequalities has been under rapid development, based on complex analysis and strongly influenced by 'real-life' application. Many, but of course not all, moving free (Le. , a priori un known) boundary problems originating from engineering and economic applica tions can directly, or after a transformation, be formulated as variational inequal ities. In this work we investigate an evolutionary variational inequality with a memory term which is, as a fixed domain formulation, the result of the application of such a transformation to a degenerate moving free boundary problem. This study includes mathematical modelling, existence, uniqueness and regularity results, numerical analysis of finite element and finite volume approximations, as well as numerical simulation results for applications in polymer processing. Essential parts of these research notes were developed during my work at the Chair of Applied Mathematics (LAM) of the Technical University Munich. I would like to express my sincerest gratitude to K. -H. Hoffmann, the head of this chair and the present scientific director of the Center of Advanced European Studies and Research (caesar), for his encouragement and support. With this work I am fol lowing a general concept of Applied Mathematics to which he directed my interest and which, based on application problems, comprises mathematical modelling, mathematical and numerical analysis, computational aspects and visualization of simulation results. 294 pp. Englisch. Seller Inventory # 9783764365820
Quantity: 2 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Since the early 1960s, the mathematical theory of variational inequalities has been under rapid development, based on complex analysis and strongly influenced by 'real-life' application. Many, but of course not all, moving free (Le. , a priori un known) boundary problems originating from engineering and economic applica tions can directly, or after a transformation, be formulated as variational inequal ities. In this work we investigate an evolutionary variational inequality with a memory term which is, as a fixed domain formulation, the result of the application of such a transformation to a degenerate moving free boundary problem. This study includes mathematical modelling, existence, uniqueness and regularity results, numerical analysis of finite element and finite volume approximations, as well as numerical simulation results for applications in polymer processing. Essential parts of these research notes were developed during my work at the Chair of Applied Mathematics (LAM) of the Technical University Munich. I would like to express my sincerest gratitude to K. -H. Hoffmann, the head of this chair and the present scientific director of the Center of Advanced European Studies and Research (caesar), for his encouragement and support. With this work I am fol lowing a general concept of Applied Mathematics to which he directed my interest and which, based on application problems, comprises mathematical modelling, mathematical and numerical analysis, computational aspects and visualization of simulation results.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 308 pp. Englisch. Seller Inventory # 9783764365820
Quantity: 1 available