Items related to Demystifying Human Action Recognition in Deep Learning...

Demystifying Human Action Recognition in Deep Learning with Space-Time Feature Descriptors - Softcover

 
9783668642607: Demystifying Human Action Recognition in Deep Learning with Space-Time Feature Descriptors

Synopsis

Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces. The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified. In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatial and temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance.

"synopsis" may belong to another edition of this title.

About the Author

Mike Nkongolo received the BSc (Hons) degree in computer science from the University of the Witwatersrand, Johannesburg, South Africa, in 2016. He is currently working toward the Masters degree in the School of Computer Science and Applied Mathematics, University of the Witwatersrand. His research interests include the theory and applications of Intelligent Systems, Web-based platforms and Machine Learning, Sentiment detection in Web Mining, and Artificial Intelligence-Natural Languages Processing.

"About this title" may belong to another edition of this title.

Buy New

View this item

£ 9.50 shipping from Germany to United Kingdom

Destination, rates & speeds

Search results for Demystifying Human Action Recognition in Deep Learning...

Seller Image

Mike Nkongolo
Published by GRIN Verlag Feb 2018, 2018
ISBN 10: 3668642605 ISBN 13: 9783668642607
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance. 40 pp. Englisch. Seller Inventory # 9783668642607

Contact seller

Buy New

£ 15.96
Convert currency
Shipping: £ 9.50
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Mike Nkongolo
Published by GRIN Verlag, 2018
ISBN 10: 3668642605 ISBN 13: 9783668642607
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance. Seller Inventory # 9783668642607

Contact seller

Buy New

£ 15.96
Convert currency
Shipping: £ 12.08
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Mike Nkongolo
ISBN 10: 3668642605 ISBN 13: 9783668642607
New Taschenbuch
Print on Demand

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance.Books on Demand GmbH, Überseering 33, 22297 Hamburg 40 pp. Englisch. Seller Inventory # 9783668642607

Contact seller

Buy New

£ 15.96
Convert currency
Shipping: £ 38.85
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Mike Nkongolo
Published by GRIN Verlag, 2018
ISBN 10: 3668642605 ISBN 13: 9783668642607
New Taschenbuch

Seller: preigu, Osnabrück, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Demystifying Human Action Recognition in Deep Learning with Space-Time Feature Descriptors | Mike Nkongolo | Taschenbuch | 40 S. | Englisch | 2018 | GRIN Verlag | EAN 9783668642607 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Seller Inventory # 111564833

Contact seller

Buy New

£ 15.96
Convert currency
Shipping: £ 47.48
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 5 available

Add to basket