The subject of this book is supply chain logistics planning optimization under multiple uncertainties, the key issue in supply chain management. Focusing on the strategic-alliance three-level supply chain, the model of supply chain logistics planning was established in terms of the market prices and the market requirements as random variables of manufactured goods with random expected value programming theory, and the hybrid intelligence algorithm solution model was designed. Aiming at the decentralized control supply chain, in which the nodes were unlimited expansion, the chance-constrained stochastic programming model was created in order to obtain optimal decision-making at a certain confidence level. In addition, the hybrid intelligence algorithm model was designed to solve the problem of supply chain logistics planning with the prices of the raw-materials supply market of the upstream enterprises and the prices of market demand for products of the downstream enterprises as random variables in the supply chain unit. Aimed at the three-stage mixed control supply chain, a logistics planning model was designed using fuzzy random programming theory with customer demand as fuzzy random variables and a hybrid intelligence algorithm solution was created. The research has significance both in theory and practice. Its theoretical significance is that the research can complement and perfect existing supply chain planning in terms of quantification. Its practical significance is that the results will guide companies in supply chain logistics planning in the uncertain environment.
"synopsis" may belong to another edition of this title.
The subject of this book is supply chain logistics planning optimization under multiple uncertainties, the key issue in supply chain management. Focusing on the strategic-alliance three-level supply chain, the model of supply chain logistics planning was established in terms of the market prices and the market requirements as random variables of manufactured goods with random expected value programming theory, and the hybrid intelligence algorithm solution model was designed. Aiming at the decentralized control supply chain, in which the nodes were unlimited expansion, the chance-constrained stochastic programming model was created in order to obtain optimal decision-making at a certain confidence level. In addition, the hybrid intelligence algorithm model was designed to solve the problem of supply chain logistics planning with the prices of the raw-materials supply market of the upstream enterprises and the prices of market demand for products of the downstream enterprises as random variables in the supply chain unit. Aimed at the three-stage mixed control supply chain, a logistics planning model was designed using fuzzy random programming theory with customer demand as fuzzy random variables and a hybrid intelligence algorithm solution was created.The research has significance both in theory and practice. Its theoretical significance is that the research can complement and perfect existing supply chain planning in terms of quantification. Its practical significance is that the results will guide companies in supply chain logistics planning in the uncertain environment.
"About this title" may belong to another edition of this title.
£ 8 shipping within United Kingdom
Destination, rates & speedsSeller: Cotswolds Rare Books, OXFORDSHIRE, United Kingdom
Hardcover. Condition: New. Brand new copy. Seller Inventory # 1949A
Quantity: 1 available
Seller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand. Seller Inventory # cbc70078281a99850444bc5394f29a16
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783662472491_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The subject of this book is supply chain logistics planning optimization under multiple uncertainties, the key issue in supply chain management. Focusing on the strategic-alliance three-level supply chain, the model of supply chain logistics planning was established in terms of the market prices and the market requirements as random variables of manufactured goods with random expected value programming theory, and the hybrid intelligence algorithm solution model was designed. Aiming at the decentralized control supply chain, in which the nodes were unlimited expansion, the chance-constrained stochastic programming model was created in order to obtain optimal decision-making at a certain confidence level. In addition, the hybrid intelligence algorithm model was designed to solve the problem of supply chain logistics planning with the prices of the raw-materials supply market of the upstream enterprises and the prices of market demand for products of the downstream enterprises as random variables in the supply chain unit. Aimed at the three-stage mixed control supply chain, a logistics planning model was designed using fuzzy random programming theory with customer demand as fuzzy random variables and a hybrid intelligence algorithm solution was created. The research has significance both in theory and practice. Its theoretical significance is that the research can complement and perfect existing supply chain planning in terms of quantification. Its practical significance is that the results will guide companies in supply chain logistics planning in the uncertain environment. 208 pp. Englisch. Seller Inventory # 9783662472491
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The subject of this book is supply chain logistics planning optimization under multiple uncertainties, the key issue in supply chain management. Focusing on the strategic-alliance three-level supply chain, the model of supply chain logistics planning was established in terms of the market prices and the market requirements as random variables of manufactured goods with random expected value programming theory, and the hybrid intelligence algorithm solution model was designed. Aiming at the decentralized control supply chain, in which the nodes were unlimited expansion, the chance-constrained stochastic programming model was created in order to obtain optimal decision-making at a certain confidence level. In addition, the hybrid intelligence algorithm model was designed to solve the problem of supply chain logistics planning with the prices of the raw-materials supply market of the upstream enterprises and the prices of market demand for products of the downstream enterprises as random variables in the supply chain unit. Aimed at the three-stage mixed control supply chain, a logistics planning model was designed using fuzzy random programming theory with customer demand as fuzzy random variables and a hybrid intelligence algorithm solution was created. The research has significance both in theory and practice. Its theoretical significance is that the research can complement and perfect existing supply chain planning in terms of quantification. Its practical significance is that the results will guide companies in supply chain logistics planning in the uncertain environment. Seller Inventory # 9783662472491
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 2015 edition. 200 pages. 9.50x6.25x0.50 inches. In Stock. Seller Inventory # x-366247249X
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 188. Seller Inventory # 374279039
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 188. Seller Inventory # 26372815008
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -¿The subject of this book is supply chain logistics planning optimization under multiple uncertainties, the key issue in supply chain management. Focusing on the strategic-alliance three-level supply chain, the model of supply chain logistics planning was established in terms of the market prices and the market requirements as random variables of manufactured goods with random expected value programming theory, and the hybrid intelligence algorithm solution model was designed. Aiming at the decentralized control supply chain, in which the nodes were unlimited expansion, the chance-constrained stochastic programming model was created in order to obtain optimal decision-making at a certain confidence level. In addition, the hybrid intelligence algorithm model was designed to solve the problem of supply chain logistics planning with the prices of the raw-materials supply market of the upstream enterprises and the prices of market demand for products of the downstream enterprises as random variables in the supply chain unit. Aimed at the three-stage mixed control supply chain, a logistics planning model was designed using fuzzy random programming theory with customer demand as fuzzy random variables and a hybrid intelligence algorithm solution was created. The research has significance both in theory and practice. Its theoretical significance is that the research can complement and perfect existing supply chain planning in terms of quantification. Its practical significance is that the results will guide companies in supply chain logistics planning in the uncertain environment.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 208 pp. Englisch. Seller Inventory # 9783662472491
Quantity: 2 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 188. Seller Inventory # 18372815018
Quantity: 4 available