In modern speech recognition systems, there are a set of Feature Extraction Techniques (FET) like Mel-frequency cepstral coefficients (MFCC) or perceptual linear prediction coefficients (PLP) are mainly used. As compared to the conventional FET like LPCC etc, these approaches are provide a better speech signal that contains the relevant information of the speech signal uttered by the speaker during training and testing of the Speech To Text Detection System (STTDS) for different Indian languages. In this dissertation, variation in the parameters values of FET’s like MFCC, PLP are varied at the front end along with dynamic HMM topology at the back end and then the speech signals produce by these techniques are analyzed using HTK toolkit. The cornerstone of all the current state-of-the-art STTDS is the use of HMM acoustic models. In our work the effectiveness of proposed FET(MFCC, PLP features) are tested and the comparison is done among the FET like MFCC and PLP acoustic features to extract the relevant information about what is being spoken from the audio signal and experimental results are computed with varying HMM topology at the back end.
"synopsis" may belong to another edition of this title.
Er. Virender Kadyan currently working as an Assistant Professor at Chitkara University, Punjab. He has done his M.Tech. degree from Department of Computer Science & Engineering at DVIET, INDIA. His research interests include automatic speech recognition.Dr. Ashish Chopra currently working as an Assistant Professor at NIT, Kurukshetra, India.
"About this title" may belong to another edition of this title.
£ 9.47 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In modern speech recognition systems, there are a set of Feature Extraction Techniques (FET) like Mel-frequency cepstral coefficients (MFCC) or perceptual linear prediction coefficients (PLP) are mainly used. As compared to the conventional FET like LPCC etc, these approaches are provide a better speech signal that contains the relevant information of the speech signal uttered by the speaker during training and testing of the Speech To Text Detection System (STTDS) for different Indian languages. In this dissertation, variation in the parameters values of FET's like MFCC, PLP are varied at the front end along with dynamic HMM topology at the back end and then the speech signals produce by these techniques are analyzed using HTK toolkit. The cornerstone of all the current state-of-the-art STTDS is the use of HMM acoustic models. In our work the effectiveness of proposed FET(MFCC, PLP features) are tested and the comparison is done among the FET like MFCC and PLP acoustic features to extract the relevant information about what is being spoken from the audio signal and experimental results are computed with varying HMM topology at the back end. 112 pp. Englisch. Seller Inventory # 9783659939877
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In modern speech recognition systems, there are a set of Feature Extraction Techniques (FET) like Mel-frequency cepstral coefficients (MFCC) or perceptual linear prediction coefficients (PLP) are mainly used. As compared to the conventional FET like LPCC etc, these approaches are provide a better speech signal that contains the relevant information of the speech signal uttered by the speaker during training and testing of the Speech To Text Detection System (STTDS) for different Indian languages. In this dissertation, variation in the parameters values of FET's like MFCC, PLP are varied at the front end along with dynamic HMM topology at the back end and then the speech signals produce by these techniques are analyzed using HTK toolkit. The cornerstone of all the current state-of-the-art STTDS is the use of HMM acoustic models. In our work the effectiveness of proposed FET(MFCC, PLP features) are tested and the comparison is done among the FET like MFCC and PLP acoustic features to extract the relevant information about what is being spoken from the audio signal and experimental results are computed with varying HMM topology at the back end. Seller Inventory # 9783659939877
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kadyan VirenderEr. Virender Kadyan currently working as an Assistant Professor at Chitkara University, Punjab. He has done his M.Tech. degree from Department of Computer Science & Engineering at DVIET, INDIA. His research interests i. Seller Inventory # 158877981
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 401685168
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26394691951
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND. Seller Inventory # 18394691941
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -In modern speech recognition systems, there are a set of Feature Extraction Techniques (FET) like Mel-frequency cepstral coefficients (MFCC) or perceptual linear prediction coefficients (PLP) are mainly used. As compared to the conventional FET like LPCC etc, these approaches are provide a better speech signal that contains the relevant information of the speech signal uttered by the speaker during training and testing of the Speech To Text Detection System (STTDS) for different Indian languages. In this dissertation, variation in the parameters values of FET¿s like MFCC, PLP are varied at the front end along with dynamic HMM topology at the back end and then the speech signals produce by these techniques are analyzed using HTK toolkit. The cornerstone of all the current state-of-the-art STTDS is the use of HMM acoustic models. In our work the effectiveness of proposed FET(MFCC, PLP features) are tested and the comparison is done among the FET like MFCC and PLP acoustic features to extract the relevant information about what is being spoken from the audio signal and experimental results are computed with varying HMM topology at the back end.Books on Demand GmbH, Überseering 33, 22297 Hamburg 112 pp. Englisch. Seller Inventory # 9783659939877
Quantity: 2 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 112 pages. 8.66x5.91x0.26 inches. In Stock. Seller Inventory # 3659939870
Quantity: 1 available