The increasing global energy needs and the high integration of renewable energy generation require long-distance power transmission and multi-terminal complex grids. High-voltage direct current (HVDC) is an appealing alternative for future grids. Recent HVDC research has focused on voltage-source converter (VSC) technology. However, VSC is unable to handle DC contingencies. Thus far, AC breakers have been the only way to clear DC faults, though with significant economic and societal consequences. Other protection concepts include multi-level converters and faulty line identification methods. Still, DC breakers are necessary to isolate the faulty line from the network. The goal of this work is to investigate multi-terminal grid topologies under fault cases and analyze the impact of current limiting measures and control strategies on the developing DC fault currents. DC breaker technologies are studied and compared based on the total fault interruption time and the system post-fault operation restoration. With the analyzed concepts, HVDC system designers will be able to understand and tackle DC faults to facilitate an uninterruptible power flow amongst several different AC grids.
"synopsis" may belong to another edition of this title.
Born in 1988 in Corfu, Greece, he joined the National Technical University of Athens (NTUA) in 2005, where he obtained his Diploma in Electrical and Computer Engineering in 2010. In 2013 he received his MSc. (cum laude) in Sustainable Energy Technology from the Technical University of Delft. Since September 2013 he is a PhD researcher at TU Delft.
"About this title" may belong to another edition of this title.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The increasing global energy needs and the high integration of renewable energy generation require long-distance power transmission and multi-terminal complex grids. High-voltage direct current (HVDC) is an appealing alternative for future grids. Recent HVDC research has focused on voltage-source converter (VSC) technology. However, VSC is unable to handle DC contingencies. Thus far, AC breakers have been the only way to clear DC faults, though with significant economic and societal consequences. Other protection concepts include multi-level converters and faulty line identification methods. Still, DC breakers are necessary to isolate the faulty line from the network. The goal of this work is to investigate multi-terminal grid topologies under fault cases and analyze the impact of current limiting measures and control strategies on the developing DC fault currents. DC breaker technologies are studied and compared based on the total fault interruption time and the system post-fault operation restoration. With the analyzed concepts, HVDC system designers will be able to understand and tackle DC faults to facilitate an uninterruptible power flow amongst several different AC grids. 220 pp. Englisch. Seller Inventory # 9783659486630
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kontos EpameinondasBorn in 1988 in Corfu, Greece, he joined the National Technical University of Athens (NTUA) in 2005, where he obtained his Diploma in Electrical and Computer Engineering in 2010. In 2013 he received his MSc. (cum l. Seller Inventory # 5159203
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 220 pages. 8.66x5.91x0.50 inches. In Stock. Seller Inventory # __3659486639
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -The increasing global energy needs and the high integration of renewable energy generation require long-distance power transmission and multi-terminal complex grids. High-voltage direct current (HVDC) is an appealing alternative for future grids. Recent HVDC research has focused on voltage-source converter (VSC) technology. However, VSC is unable to handle DC contingencies. Thus far, AC breakers have been the only way to clear DC faults, though with significant economic and societal consequences. Other protection concepts include multi-level converters and faulty line identification methods. Still, DC breakers are necessary to isolate the faulty line from the network. The goal of this work is to investigate multi-terminal grid topologies under fault cases and analyze the impact of current limiting measures and control strategies on the developing DC fault currents. DC breaker technologies are studied and compared based on the total fault interruption time and the system post-fault operation restoration. With the analyzed concepts, HVDC system designers will be able to understand and tackle DC faults to facilitate an uninterruptible power flow amongst several different AC grids.Books on Demand GmbH, Überseering 33, 22297 Hamburg 220 pp. Englisch. Seller Inventory # 9783659486630
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The increasing global energy needs and the high integration of renewable energy generation require long-distance power transmission and multi-terminal complex grids. High-voltage direct current (HVDC) is an appealing alternative for future grids. Recent HVDC research has focused on voltage-source converter (VSC) technology. However, VSC is unable to handle DC contingencies. Thus far, AC breakers have been the only way to clear DC faults, though with significant economic and societal consequences. Other protection concepts include multi-level converters and faulty line identification methods. Still, DC breakers are necessary to isolate the faulty line from the network. The goal of this work is to investigate multi-terminal grid topologies under fault cases and analyze the impact of current limiting measures and control strategies on the developing DC fault currents. DC breaker technologies are studied and compared based on the total fault interruption time and the system post-fault operation restoration. With the analyzed concepts, HVDC system designers will be able to understand and tackle DC faults to facilitate an uninterruptible power flow amongst several different AC grids. Seller Inventory # 9783659486630
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Control and Protection of VSC-based Multi-terminal DC Networks | Epameinondas Kontos (u. a.) | Taschenbuch | 220 S. | Englisch | 2013 | LAP LAMBERT Academic Publishing | EAN 9783659486630 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Seller Inventory # 105554879
Seller: Mispah books, Redhill, SURRE, United Kingdom
paperback. Condition: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Seller Inventory # ERICA82936594866396