In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition.
"synopsis" may belong to another edition of this title.
Dr. Rupinder Singh is Professor in Production Engineering at Guru Nanak Dev Engineering College, Ludhiana. He has published more than 200 research papers in area of manufacturing engineering. Er. Vishal Mahajan is M.Tech research scholar in Dept. of Production Engineering. His area of interest is metal casting.
"About this title" may belong to another edition of this title.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition. 76 pp. Englisch. Seller Inventory # 9783659432088
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Singh RupinderDr. Rupinder Singh is Professor in Production Engineering at Guru Nanak Dev Engineering College, Ludhiana. He has published more than 200 research papers in area of manufacturing engineering. Er. Vishal Mahajan is M.Tec. Seller Inventory # 5155858
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition.Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. Seller Inventory # 9783659432088
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In present work advancement in replication techniques for a biomedical component having a real 3D shape has been introduced. A hip joint was selected as one of a real 3D biomedical implant for this study. A hip joint, made of ABS material, was fabricated as a master pattern by fused deposition modelling (FDM) method. After this mold was made by the deposition of Primary, Secondary and Tertiary coatings with the addition of (1- 2cm in length) nylon fiber of 1.5D as per the Taguchi L9 control log of experimentation.This study outlines complete replication procedure of hip joint in detail from the master pattern to a final product with some investigation on mechanical and metallurgical properties. The results of study highlights that during shell production, fiber modified shells had a much reduced drain time. This gave a higher ceramic retention rate after dipping and led to a thicker coat compared to that produced without fiber addition. Seller Inventory # 9783659432088
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Reduction in cycle time of investment casting process | by advancements in shell moulding | Rupinder Singh (u. a.) | Taschenbuch | 76 S. | Englisch | 2013 | LAP LAMBERT Academic Publishing | EAN 9783659432088 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Seller Inventory # 105722143
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Seller Inventory # ERICA79736594320836