Almost all relevant decisions have attached values or outcomes that are uncertain. However, when a complete description of the uncertainties is unknown, traditional models struggle to provide an optimal course of action. In this book, I present a modeling procedure to analyze stochastic decisions with underspecified joint probability distributions. The book is directed to researchers and practitioners with the interest of modeling problems where the structure of the uncertainties is partially known. This work represents a four-fold project. First, a new framework for joint probability distribution approximations is provided. Second, a new joint distribution simulation procedure (JDSIM) is developed. JDSIM sample joint probability distributions from the set of all possible distributions that match the available information. Third, a framework for testing the accuracy of different joint probability distribution approximations is developed. Finally, a new approach to decision making under uncertainty is proposed. The techniques in this book will provide the reader with the tools to model and analyze decisions with a new and deeper understanding of the relevant uncertainties.
"synopsis" may belong to another edition of this title.
Born in Mexico. He has a BS in Engineering from ITESM-CCM, a MS in Management Science & Engineering at Stanford University, and a MS in Financial Engineering at Columbia University. He holds a Ph. D. in Operations Research from The University of Texas at Austin. His main interests are stochastic optimization and decision analysis.
"About this title" may belong to another edition of this title.
£ 25 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Almost all relevant decisions have attached values or outcomes that are uncertain. However, when a complete description of the uncertainties is unknown, traditional models struggle to provide an optimal course of action. In this book, I present a modeling procedure to analyze stochastic decisions with underspecified joint probability distributions. The book is directed to researchers and practitioners with the interest of modeling problems where the structure of the uncertainties is partially known. This work represents a four-fold project. First, a new framework for joint probability distribution approximations is provided. Second, a new joint distribution simulation procedure (JDSIM) is developed. JDSIM sample joint probability distributions from the set of all possible distributions that match the available information. Third, a framework for testing the accuracy of different joint probability distribution approximations is developed. Finally, a new approach to decision making under uncertainty is proposed. The techniques in this book will provide the reader with the tools to model and analyze decisions with a new and deeper understanding of the relevant uncertainties. 284 pp. Englisch. Seller Inventory # 9783659217173
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Montiel Luis V.Born in Mexico. He has a BS in Engineering from ITESM-CCM, a MS in Management Science & Engineering at Stanford University, and a MS in Financial Engineering at Columbia University. He holds a Ph. D. in Operations Rese. Seller Inventory # 5140489
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Almost all relevant decisions have attached values or outcomes that are uncertain. However, when a complete description of the uncertainties is unknown, traditional models struggle to provide an optimal course of action. In this book, I present a modeling procedure to analyze stochastic decisions with underspecified joint probability distributions. The book is directed to researchers and practitioners with the interest of modeling problems where the structure of the uncertainties is partially known. This work represents a four-fold project. First, a new framework for joint probability distribution approximations is provided. Second, a new joint distribution simulation procedure (JDSIM) is developed. JDSIM sample joint probability distributions from the set of all possible distributions that match the available information. Third, a framework for testing the accuracy of different joint probability distribution approximations is developed. Finally, a new approach to decision making under uncertainty is proposed. The techniques in this book will provide the reader with the tools to model and analyze decisions with a new and deeper understanding of the relevant uncertainties.Books on Demand GmbH, Überseering 33, 22297 Hamburg 284 pp. Englisch. Seller Inventory # 9783659217173
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Almost all relevant decisions have attached values or outcomes that are uncertain. However, when a complete description of the uncertainties is unknown, traditional models struggle to provide an optimal course of action. In this book, I present a modeling procedure to analyze stochastic decisions with underspecified joint probability distributions. The book is directed to researchers and practitioners with the interest of modeling problems where the structure of the uncertainties is partially known. This work represents a four-fold project. First, a new framework for joint probability distribution approximations is provided. Second, a new joint distribution simulation procedure (JDSIM) is developed. JDSIM sample joint probability distributions from the set of all possible distributions that match the available information. Third, a framework for testing the accuracy of different joint probability distribution approximations is developed. Finally, a new approach to decision making under uncertainty is proposed. The techniques in this book will provide the reader with the tools to model and analyze decisions with a new and deeper understanding of the relevant uncertainties. Seller Inventory # 9783659217173
Quantity: 1 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA79636592171746
Quantity: 1 available