Development of river bedform under interactions with water flows is a complex process due to turbulence of the flow and continuous change of bed geometry. In this study, the problem was examined by numerical computations. Two latest advanced tools of Computational Fluid Mechanics, namely Large-Eddy-Simulation and Immersed-Boundary-Method, were employed. Flows were turbulent at low Reynolds number and treated in three-dimensions. Bed surfaces was treated as continuos medium rather than individual sediment particles. The results showed strong correlations between change of the bed surface and the shear tress applied by the flows. Development of bedform from initially flat bed to full-size sandwaves had been observed from the computations. Experimentally observed phenomena, such as development of ripple train, was also successfully reproduced.
"synopsis" may belong to another edition of this title.
Dr. Nguyen Quoc Y obtained his PhD degree at Ritsumeican University (Japan) in 2008. He currently works at Ho Chi Minh City University of Technology in Vietnam. His research interests are in civil and environmental fluid mechanics by both computations and experiments.
"About this title" may belong to another edition of this title.
£ 25 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Development of river bedform under interactions with water flows is a complex process due to turbulence of the flow and continuous change of bed geometry. In this study, the problem was examined by numerical computations. Two latest advanced tools of Computational Fluid Mechanics, namely Large-Eddy-Simulation and Immersed-Boundary-Method, were employed. Flows were turbulent at low Reynolds number and treated in three-dimensions. Bed surfaces was treated as continuos medium rather than individual sediment particles. The results showed strong correlations between change of the bed surface and the shear tress applied by the flows. Development of bedform from initially flat bed to full-size sandwaves had been observed from the computations. Experimentally observed phenomena, such as development of ripple train, was also successfully reproduced. 140 pp. Englisch. Seller Inventory # 9783659130809
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Development of river bedform under interactions with water flows is a complex process due to turbulence of the flow and continuous change of bed geometry. In this study, the problem was examined by numerical computations. Two latest advanced tools of Computational Fluid Mechanics, namely Large-Eddy-Simulation and Immersed-Boundary-Method, were employed. Flows were turbulent at low Reynolds number and treated in three-dimensions. Bed surfaces was treated as continuos medium rather than individual sediment particles. The results showed strong correlations between change of the bed surface and the shear tress applied by the flows. Development of bedform from initially flat bed to full-size sandwaves had been observed from the computations. Experimentally observed phenomena, such as development of ripple train, was also successfully reproduced. Seller Inventory # 9783659130809
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Nguyen Quoc Y.Dr. Nguyen Quoc Y obtained his PhD degree at Ritsumeican University (Japan) in 2008. He currently works at Ho Chi Minh City University of Technology in Vietnam. His research interests are in civil and environmental flui. Seller Inventory # 5133630
Quantity: Over 20 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA758365913080X6
Quantity: 1 available