This master’s thesis presents a novel approach to finding trajectories with minimal end time for kinematically redundant manipulators. Emphasis is given to a general applicability of the developed method to industrial tasks such as gluing or welding. Minimum-time trajectories may yield economic advantages as a shorter trajectory duration results in a lower task cycle time. Whereas kinematically redundant manipulators possess increased dexterity, compared to conventional non-redundant manipulators, their inverse kinematics is not unique and requires further treatment. In this work a joint space decomposition approach is introduced that takes advantage of the closed form inverse kinematics solution of non-redundant robots. Kinematic redundancy can be fully exploited to achieve minimum-time trajectories for prescribed end-effector paths.
"synopsis" may belong to another edition of this title.
Alexander Reiter is a Senior Scientist at the Institute of Robotics of the Johannes Kepler University Linz in Austria. His major fields of research are kinematics, dynamics, and trajectory planning for kinematically redundant serial robots.
This master’s thesis presents a novel approach to finding trajectories with minimal end time for kinematically redundant manipulators. Emphasis is given to a general applicability of the developed method to industrial tasks such as gluing or welding. Minimum-time trajectories may yield economic advantages as a shorter trajectory duration results in a lower task cycle time. Whereas kinematically redundant manipulators possess increased dexterity, compared to conventional non-redundant manipulators, their inverse kinematics is not unique and requires further treatment. In this work a joint space decomposition approach is introduced that takes advantage of the closed form inverse kinematics solution of non-redundant robots. Kinematic redundancy can be fully exploited to achieve minimum-time trajectories for prescribed end-effector paths.
Contents
The Author
Alexander Reiter is a Senior Scientist at the Institute of Robotics of the Johannes Kepler University Linz in Austria. His major fields of research are kinematics, dynamics, and trajectory planning for kinematically redundant serial robots."About this title" may belong to another edition of this title.
FREE shipping within United Kingdom
Destination, rates & speedsSeller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 25254871-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783658127008_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9783658127008
Quantity: 10 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This master's thesis presents a novel approach to finding trajectories with minimal end time for kinematically redundant manipulators. Emphasis is given to a general applicability of the developed method to industrial tasks such as gluing or welding. Minimum-time trajectories may yield economic advantages as a shorter trajectory duration results in a lower task cycle time. Whereas kinematically redundant manipulators possess increased dexterity, compared to conventional non-redundant manipulators, their inverse kinematics is not unique and requires further treatment. In this work a joint space decomposition approach is introduced that takes advantage of the closed form inverse kinematics solution of non-redundant robots. Kinematic redundancy can be fully exploited to achieve minimum-time trajectories for prescribed end-effector paths. 108 pp. Englisch. Seller Inventory # 9783658127008
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This master's thesis presents a novel approach to finding trajectories with minimal end time for kinematically redundant manipulators. Emphasis is given to a general applicability of the developed method to industrial tasks such as gluing or welding. Minimum-time trajectories may yield economic advantages as a shorter trajectory duration results in a lower task cycle time. Whereas kinematically redundant manipulators possess increased dexterity, compared to conventional non-redundant manipulators, their inverse kinematics is not unique and requires further treatment. In this work a joint space decomposition approach is introduced that takes advantage of the closed form inverse kinematics solution of non-redundant robots. Kinematic redundancy can be fully exploited to achieve minimum-time trajectories for prescribed end-effector paths. Seller Inventory # 9783658127008
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 25254871-n
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Study in RoboticsAlexander Reiter is aSenior Scientist at the Institute of Robotics of the Johannes Kepler UniversityLinz in Austria. His major fields of research are kinematics, dynamics, andtrajectory planning for kinematically redundant serial rob. Seller Inventory # 112484667
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 90 pages. 8.00x5.75x0.25 inches. In Stock. Seller Inventory # x-3658127007
Quantity: 2 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -This master¿s thesis presents a novel approach to finding trajectories with minimal end time for kinematically redundant manipulators. Emphasis is given to a general applicability of the developed method to industrial tasks such as gluing or welding. Minimum-time trajectories may yield economic advantages as a shorter trajectory duration results in a lower task cycle time. Whereas kinematically redundant manipulators possess increased dexterity, compared to conventional non-redundant manipulators, their inverse kinematics is not unique and requires further treatment. In this work a joint space decomposition approach is introduced that takes advantage of the closed form inverse kinematics solution of non-redundant robots. Kinematic redundancy can be fully exploited to achieve minimum-time trajectories for prescribed end-effector paths.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 108 pp. Englisch. Seller Inventory # 9783658127008
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 90. Seller Inventory # 371904185
Quantity: 4 available