In der Arbeit von Daniel Lückehe wird ein neues hybrides Verfahren zur Dimensionsreduktion methodisch erarbeitet, analysiert und durch experimentelle Tests mit vorhandenen Methoden verglichen. Hochdimensionale Daten, häufig zusammengefasst unter dem Begriff „Big Data“, liegen heutzutage in vielen Bereichen vor. Darunter fallen beispielsweise visuell erfasste Informationen, in denen Muster erkannt werden sollen, Anwendungen im medizinischen Bereich sowie Daten aus dem Gebiet der Astronomie.
Eine Dimensionsreduktion kann dabei helfen, Informationen aus großen, hochkomplexen Datensätzen zu gewinnen und diese besser verarbeiten zu können. So können Daten beispielsweise auf einen zweidimensionalen Raum abgebildet und somit für den Menschen visuell erfassbar werden.
"synopsis" may belong to another edition of this title.
Daniel Lückehe hat nach seiner Ausbildung zum Fachinformatiker und seinem dualen Studium zum Bachelor of Engineering ein Masterstudium an der Universität Oldenburg absolviert. Aktuell arbeitet er an seiner Doktorarbeit im Promotionsprogramm „Systemintegration Erneuerbarer Energien“.
In der Arbeit von Daniel Lückehe wird ein neues hybrides Verfahren zur Dimensionsreduktion methodisch erarbeitet, analysiert und durch experimentelle Tests mit vorhandenen Methoden verglichen. Hochdimensionale Daten, häufig zusammengefasst unter dem Begriff „Big Data“, liegen heutzutage in vielen Bereichen vor. Darunter fallen beispielsweise visuell erfasste Informationen, in denen Muster erkannt werden sollen, Anwendungen im medizinischen Bereich sowie Daten aus dem Gebiet der Astronomie.
Eine Dimensionsreduktion kann dabei helfen, Informationen aus großen, hochkomplexen Datensätzen zu gewinnen und diese besser verarbeiten zu können. So können Daten beispielsweise auf einen zweidimensionalen Raum abgebildet und somit für den Menschen visuell erfassbar werden.
Der Inhalt
Die Zielgruppen
Der Autor
Daniel Lückehe hat nach seiner Ausbildung zum Fachinformatiker und seinem dualen Studium zumBachelor of Engineering ein Masterstudium an der Universität Oldenburg absolviert. Aktuell arbeitet er an seiner Doktorarbeit im Promotionsprogramm „Systemintegration Erneuerbarer Energien“."About this title" may belong to another edition of this title.
£ 10.10 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germany
VIII, 99 S. Broschur. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. BestMasters. Sprache: Deutsch. Seller Inventory # 7420IB
Quantity: 1 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783658107376
Quantity: 10 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In German. Seller Inventory # ria9783658107376_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In der Arbeit von Daniel Lückehe wird ein neues hybrides Verfahren zur Dimensionsreduktion methodisch erarbeitet, analysiert und durch experimentelle Tests mit vorhandenen Methoden verglichen. Hochdimensionale Daten, häufig zusammengefasst unter dem Begriff 'Big Data', liegen heutzutage in vielen Bereichen vor. Darunter fallen beispielsweise visuell erfasste Informationen, in denen Muster erkannt werden sollen, Anwendungen im medizinischen Bereich sowie Daten aus dem Gebiet der Astronomie. Eine Dimensionsreduktion kann dabei helfen, Informationen aus großen, hochkomplexen Datensätzen zu gewinnen und diese besser verarbeiten zu können. So können Daten beispielsweise auf einen zweidimensionalen Raum abgebildet und somit für den Menschen visuell erfassbar werden. 108 pp. Deutsch. Seller Inventory # 9783658107376
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - In der Arbeit von Daniel Lückehe wird ein neues hybrides Verfahren zur Dimensionsreduktion methodisch erarbeitet, analysiert und durch experimentelle Tests mit vorhandenen Methoden verglichen. Hochdimensionale Daten, häufig zusammengefasst unter dem Begriff 'Big Data', liegen heutzutage in vielen Bereichen vor. Darunter fallen beispielsweise visuell erfasste Informationen, in denen Muster erkannt werden sollen, Anwendungen im medizinischen Bereich sowie Daten aus dem Gebiet der Astronomie. Eine Dimensionsreduktion kann dabei helfen, Informationen aus großen, hochkomplexen Datensätzen zu gewinnen und diese besser verarbeiten zu können. So können Daten beispielsweise auf einen zweidimensionalen Raum abgebildet und somit für den Menschen visuell erfassbar werden. Seller Inventory # 9783658107376
Quantity: 1 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 1. aufl. 2015 edition. 108 pages. German language. 8.00x5.60x0.50 inches. In Stock. Seller Inventory # x-3658107375
Quantity: 2 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Wissenschaftlich-technische StudieIn der Arbeit von Daniel Lueckehe wird ein neues hybrides Verfahren zur Dimensionsreduktion methodisch erarbeitet, analysiert und durch experimentelle Tests mit vorhandenen Methoden verglichen. Hochdimensionale Daten, hae. Seller Inventory # 39150075
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -In der Arbeit von Daniel Lückehe wird ein neues hybrides Verfahren zur Dimensionsreduktion methodisch erarbeitet, analysiert und durch experimentelle Tests mit vorhandenen Methoden verglichen. Hochdimensionale Daten, häufig zusammengefasst unter dem Begriff ¿Big Datä, liegen heutzutage in vielen Bereichen vor. Darunter fallen beispielsweise visuell erfasste Informationen, in denen Muster erkannt werden sollen, Anwendungen im medizinischen Bereich sowie Daten aus dem Gebiet der Astronomie. Eine Dimensionsreduktion kann dabei helfen, Informationen aus großen, hochkomplexen Datensätzen zu gewinnen und diese besser verarbeiten zu können. So können Daten beispielsweise auf einen zweidimensionalen Raum abgebildet und somit für den Menschen visuell erfassbar werden.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 108 pp. Deutsch. Seller Inventory # 9783658107376
Quantity: 2 available
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Hybride Optimierung für Dimensionsreduktion | Unüberwachte Regression mit Gradientenabstieg und evolutionären Algorithmen | Daniel Lückehe | Taschenbuch | viii | Deutsch | 2015 | Springer Fachmedien Wiesbaden | EAN 9783658107376 | Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, 65189 Wiesbaden, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Seller Inventory # 104468450
Quantity: 5 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020245384
Quantity: Over 20 available