Items related to Genome annotation and finding repetitive DNA elements

Genome annotation and finding repetitive DNA elements - Softcover

 
9783656659815: Genome annotation and finding repetitive DNA elements

Synopsis

Bachelor Thesis from the year 2014 in the subject Computer Science - Bioinformatics, grade: 8.26, Lovely Professional University, Punjab, course: b.tech honors biotechnology, language: English, abstract: As the number of genomes sequenced is increasing at high rate, there is a need of gene prediction method which is quick, reliable, inexpensive. In such conditions, the computations tool will serve as an alternative to wet lab methods. The confidence level of annotation by the tool can be enhanced by preparing exhaustive training data sets. The aim is to develop a tool which will read data from a DNA sequence file in the fasta format and will annotate it. For this purpose Genome Database was used to retrieve the input data. PERL programming has been put to develop this tool for annotation. To increase the confidence level of annotation the data was validated from multiple sources. Perl script was written to find the promoter region, repeats, transcription factor binding site, base periodicity, and nucleotide frequency. The program written was also executed to identify repeats, poly (A) signals, CpG islands, ARS. The tool will annotate the DNA by predicting the gene structure based on the consensus sequences of important regulatory elements. The confidence level of annotation of the predicted gene, non-coding region, ARS, repeats etc. were checked by running test dataset. This test dataset was annotated data as reported by genome database and computational tools. Gene prediction of the non-coding regions as reported by genome database (SGD) were performed by existing tools; the regions identified as non-coding by these tools were then analyzed for presence of repeats. The BLAST was used to annotate on the basis of sequence similarity with the already annotated genes. GeneMark.hmm and FGENESH were used for gene prediction. In order to validate the predicted results, annotations of genome of Saccharomyces cerevisiae from SGD Database, and output of different comput

"synopsis" may belong to another edition of this title.

  • PublisherGrin Verlag
  • Publication date2014
  • ISBN 10 3656659818
  • ISBN 13 9783656659815
  • BindingPaperback
  • LanguageEnglish
  • Number of pages44

Buy Used

Zustand: Hervorragend | Seiten:...
View this item

£ 7.55 shipping from Germany to United Kingdom

Destination, rates & speeds

Buy New

View this item

£ 9.33 shipping from Germany to United Kingdom

Destination, rates & speeds

Search results for Genome annotation and finding repetitive DNA elements

Stock Image

Renu Rawat
Published by GRIN Verlag, 2014
ISBN 10: 3656659818 ISBN 13: 9783656659815
Used Softcover

Seller: Buchpark, Trebbin, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: Hervorragend. Zustand: Hervorragend | Seiten: 44 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 24781274/1

Contact seller

Buy Used

£ 8.08
Convert currency
Shipping: £ 7.55
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Seller Image

Renu Rawat
Published by GRIN Verlag Jun 2014, 2014
ISBN 10: 3656659818 ISBN 13: 9783656659815
New Taschenbuch
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Bachelor Thesis from the year 2014 in the subject Computer Science - Bioinformatics, grade: 8.26, Lovely Professional University, Punjab, course: b.tech honors biotechnology, language: English, abstract: As the number of genomes sequenced is increasing at high rate, there is a need of gene prediction method which is quick, reliable, inexpensive. In such conditions, the computations tool will serve as an alternative to wet lab methods. The confidence level of annotation by the tool can be enhanced by preparing exhaustive training data sets. The aim is to develop a tool which will read data from a DNA sequence file in the fasta format and will annotate it. For this purpose Genome Database was used to retrieve the input data.PERL programming has been put to develop this tool for annotation. To increase the confidence level of annotation the data was validated from multiple sources. Perl script was written to find the promoter region, repeats, transcription factor binding site, base periodicity, and nucleotide frequency. The program written was also executed to identify repeats, poly (A) signals, CpG islands, ARS. The tool will annotate the DNA by predicting the gene structure based on the consensus sequences of important regulatory elements. The confidence level of annotation of the predicted gene, non-coding region, ARS, repeats etc. were checked by running test dataset. This test dataset was annotated data as reported by genome database and computational tools. Gene prediction of the non-coding regions as reported by genome database (SGD) were performed by existing tools; the regions identified as non-coding by these tools were then analyzed for presence of repeats. The BLAST was used to annotate on the basis of sequence similarity with the already annotated genes.GeneMark.hmm and FGENESH were used for gene prediction. In order to validate the predicted results, annotations of genome of Saccharomyces cerevisiae from SGD Database, and output of different computational tools viz, Emboss-CpGplot, PolyAh, REPFind, Promoter 2.0 Prediction Server were compared with the output of developed tool. The output generated was also used for validation and checking sensitivity of the tool. Such tools reduce the cost and time required for genome annotation and bridge the gap between sequenced and annotated data. The output generated by the developed tool was also used for validation and checking sensitivity of the tool. Such tools reduce the cost and time required for genome annotation and bridge the gap between sequenced and annotated data. 44 pp. Englisch. Seller Inventory # 9783656659815

Contact seller

Buy New

£ 15.69
Convert currency
Shipping: £ 9.33
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Renu Rawat
Published by GRIN Verlag, 2014
ISBN 10: 3656659818 ISBN 13: 9783656659815
New Taschenbuch

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Bachelor Thesis from the year 2014 in the subject Computer Science - Bioinformatics, grade: 8.26, Lovely Professional University, Punjab, course: b.tech honors biotechnology, language: English, abstract: As the number of genomes sequenced is increasing at high rate, there is a need of gene prediction method which is quick, reliable, inexpensive. In such conditions, the computations tool will serve as an alternative to wet lab methods. The confidence level of annotation by the tool can be enhanced by preparing exhaustive training data sets. The aim is to develop a tool which will read data from a DNA sequence file in the fasta format and will annotate it. For this purpose Genome Database was used to retrieve the input data.PERL programming has been put to develop this tool for annotation. To increase the confidence level of annotation the data was validated from multiple sources. Perl script was written to find the promoter region, repeats, transcription factor binding site, base periodicity, and nucleotide frequency. The program written was also executed to identify repeats, poly (A) signals, CpG islands, ARS. The tool will annotate the DNA by predicting the gene structure based on the consensus sequences of important regulatory elements. The confidence level of annotation of the predicted gene, non-coding region, ARS, repeats etc. were checked by running test dataset. This test dataset was annotated data as reported by genome database and computational tools. Gene prediction of the non-coding regions as reported by genome database (SGD) were performed by existing tools; the regions identified as non-coding by these tools were then analyzed for presence of repeats. The BLAST was used to annotate on the basis of sequence similarity with the already annotated genes.GeneMark.hmm and FGENESH were used for gene prediction. In order to validate the predicted results, annotations of genome of Saccharomyces cerevisiae from SGD Database, and output of different computational tools viz, Emboss-CpGplot, PolyAh, REPFind, Promoter 2.0 Prediction Server were compared with the output of developed tool. The output generated was also used for validation and checking sensitivity of the tool. Such tools reduce the cost and time required for genome annotation and bridge the gap between sequenced and annotated data. The output generated by the developed tool was also used for validation and checking sensitivity of the tool. Such tools reduce the cost and time required for genome annotation and bridge the gap between sequenced and annotated data. Seller Inventory # 9783656659815

Contact seller

Buy New

£ 15.69
Convert currency
Shipping: £ 11.87
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 1 available

Add to basket

Stock Image

Rawat, Renu
Published by Grin Verlag, 2014
ISBN 10: 3656659818 ISBN 13: 9783656659815
New Softcover

Seller: California Books, Miami, FL, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # I-9783656659815

Contact seller

Buy New

£ 35.68
Convert currency
Shipping: £ 7.37
From U.S.A. to United Kingdom
Destination, rates & speeds

Quantity: Over 20 available

Add to basket

Seller Image

Renu Rawat
ISBN 10: 3656659818 ISBN 13: 9783656659815
New Taschenbuch

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Neuware -Bachelor Thesis from the year 2014 in the subject Computer Science - Bioinformatics, grade: 8.26, Lovely Professional University, Punjab, course: b.tech honors biotechnology, language: English, abstract: As the number of genomes sequenced is increasing at high rate, there is a need of gene prediction method which is quick, reliable, inexpensive. In such conditions, the computations tool will serve as an alternative to wet lab methods. The confidence level of annotation by the tool can be enhanced by preparing exhaustive training data sets. The aim is to develop a tool which will read data from a DNA sequence file in the fasta format and will annotate it. For this purpose Genome Database was used to retrieve the input data. PERL programming has been put to develop this tool for annotation. To increase the confidence level of annotation the data was validated from multiple sources. Perl script was written to find the promoter region, repeats, transcription factor binding site, base periodicity, and nucleotide frequency. The program written was also executed to identify repeats, poly (A) signals, CpG islands, ARS. The tool will annotate the DNA by predicting the gene structure based on the consensus sequences of important regulatory elements. The confidence level of annotation of the predicted gene, non-coding region, ARS, repeats etc. were checked by running test dataset. This test dataset was annotated data as reported by genome database and computational tools. Gene prediction of the non-coding regions as reported by genome database (SGD) were performed by existing tools; the regions identified as non-coding by these tools were then analyzed for presence of repeats. The BLAST was used to annotate on the basis of sequence similarity with the already annotated genes. GeneMark.hmm and FGENESH were used for gene prediction. In order to validate the predicted results, annotations of genome of Saccharomyces cerevisiae from SGD Database, and output of different computational tools viz, Emboss-CpGplot, PolyAh, REPFind, Promoter 2.0 Prediction Server were compared with the output of developed tool. The output generated was also used for validation and checking sensitivity of the tool. Such tools reduce the cost and time required for genome annotation and bridge the gap between sequenced and annotated data. The output generated by the developed tool was also used for validation and checking sensitivity of the tool. Such tools reduce the cost and time required for genome annotation and bridge the gap between sequenced and annotated data.Books on Demand GmbH, Überseering 33, 22297 Hamburg 44 pp. Englisch. Seller Inventory # 9783656659815

Contact seller

Buy New

£ 15.69
Convert currency
Shipping: £ 38.17
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 2 available

Add to basket

Seller Image

Renu Rawat
Published by GRIN Verlag, 2014
ISBN 10: 3656659818 ISBN 13: 9783656659815
New Taschenbuch

Seller: preigu, Osnabrück, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Taschenbuch. Condition: Neu. Genome annotation and finding repetitive DNA elements | Renu Rawat | Taschenbuch | 44 S. | Englisch | 2014 | GRIN Verlag | EAN 9783656659815 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Seller Inventory # 105266183

Contact seller

Buy New

£ 15.69
Convert currency
Shipping: £ 46.66
From Germany to United Kingdom
Destination, rates & speeds

Quantity: 5 available

Add to basket