The renormalization-group approach is largely responsible for the considerable success which has been achieved in the last ten years in developing a complete quantitative theory of phase transitions. Before, there was a useful physical picture of phase transitions, but a general method for making accurate quantitative predictions was lacking. Existent theories, such as the mean-field theory of Landau, sometimes reproduce phase diagrams reliably but were known to fail qualitatively near critical points, where the critical behavior is particularly interesting be cause of its universal character. In the mid 1960's Widom found that the singularities in thermodynamic quanti ties were well described by homogeneous functions. Kadanoff extended the homogeneity hypothesis to correlation functions and linked it to the idea of scale invariance. In the early 1970's Wilson showed how Kadanoff's rescaling could be explicitly carried out near the fixed point of a flow in Hamiltonian space. He made the first practical renormalization-group calculation of the flow induced by the elimination of short-wave-length Fourier components of the order-parameter field. The univer sality of the critical behavior emerges in a natural way in this approach, with a different fixed point for each universality class. The discovery by Wilson and Fisher of a systematic expansion procedure in E for a system in d = 4 - E dimen sions was followed by a cascade of calculations of critical quantities as a function of d and of the order-parameter dimensionality n.
"synopsis" may belong to another edition of this title.
£ 15 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 18772709-n
Quantity: Over 20 available
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. The renormalization-group approach is largely responsible for the considerable success which has been achieved in the last ten years in developing a complete quantitative theory of phase transitions. Before, there was a useful physical picture of phase transitions, but a general method for making accurate quantitative predictions was lacking. Existent theories, such as the mean-field theory of Landau, sometimes reproduce phase diagrams reliably but were known to fail qualitatively near critical points, where the critical behavior is particularly interesting be cause of its universal character. In the mid 1960's Widom found that the singularities in thermodynamic quanti ties were well described by homogeneous functions. Kadanoff extended the homogeneity hypothesis to correlation functions and linked it to the idea of scale invariance. In the early 1970's Wilson showed how Kadanoff's rescaling could be explicitly carried out near the fixed point of a flow in Hamiltonian space. He made the first practical renormalization-group calculation of the flow induced by the elimination of short-wave-length Fourier components of the order-parameter field. The univer sality of the critical behavior emerges in a natural way in this approach, with a different fixed point for each universality class. The discovery by Wilson and Fisher of a systematic expansion procedure in E for a system in d = 4 - E dimen sions was followed by a cascade of calculations of critical quantities as a function of d and of the order-parameter dimensionality n. Existent theories, such as the mean-field theory of Landau, sometimes reproduce phase diagrams reliably but were known to fail qualitatively near critical points, where the critical behavior is particularly interesting be cause of its universal character. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783642818271
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020237142
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783642818271
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642818271_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 18772709-n
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The renormalization-group approach is largely responsible for the considerable success which has been achieved in the last ten years in developing a complete quantitative theory of phase transitions. Before, there was a useful physical picture of phase transitions, but a general method for making accurate quantitative predictions was lacking. Existent theories, such as the mean-field theory of Landau, sometimes reproduce phase diagrams reliably but were known to fail qualitatively near critical points, where the critical behavior is particularly interesting be cause of its universal character. In the mid 1960's Widom found that the singularities in thermodynamic quanti ties were well described by homogeneous functions. Kadanoff extended the homogeneity hypothesis to correlation functions and linked it to the idea of scale invariance. In the early 1970's Wilson showed how Kadanoff's rescaling could be explicitly carried out near the fixed point of a flow in Hamiltonian space. He made the first practical renormalization-group calculation of the flow induced by the elimination of short-wave-length Fourier components of the order-parameter field. The univer sality of the critical behavior emerges in a natural way in this approach, with a different fixed point for each universality class. The discovery by Wilson and Fisher of a systematic expansion procedure in E for a system in d = 4 - E dimen sions was followed by a cascade of calculations of critical quantities as a function of d and of the order-parameter dimensionality n. 236 pp. Englisch. Seller Inventory # 9783642818271
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. With contributions by numerous expertsThe renormalization-group approach is largely responsible for the considerable success which has been achieved in the last ten years in developing a complete quantitative theory of phase transitions. Before, there w. Seller Inventory # 5071494
Quantity: Over 20 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. With contributions by numerous experts Editor(s): Burkhardt, T. W.; Leeuwen, J. M. J. van. Series: Topics in Current Physics. Num Pages: 230 pages, biography. BIC Classification: PHH; PHS. Category: (P) Professional & Vocational. Dimension: 244 x 170 x 12. Weight in Grams: 414. . 2011. Softcover reprint of the original 1st ed. 1982. Paperback. . . . . Seller Inventory # V9783642818271
Quantity: 15 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The renormalization-group approach is largely responsible for the considerable success which has been achieved in the last ten years in developing a complete quantitative theory of phase transitions. Before, there was a useful physical picture of phase transitions, but a general method for making accurate quantitative predictions was lacking. Existent theories, such as the mean-field theory of Landau, sometimes reproduce phase diagrams reliably but were known to fail qualitatively near critical points, where the critical behavior is particularly interesting be cause of its universal character. In the mid 1960's Widom found that the singularities in thermodynamic quanti ties were well described by homogeneous functions. Kadanoff extended the homogeneity hypothesis to correlation functions and linked it to the idea of scale invariance. In the early 1970's Wilson showed how Kadanoff's rescaling could be explicitly carried out near the fixed point of a flow in Hamiltonian space. He made the first practical renormalization-group calculation of the flow induced by the elimination of short-wave-length Fourier components of the order-parameter field. The univer sality of the critical behavior emerges in a natural way in this approach, with a different fixed point for each universality class. The discovery by Wilson and Fisher of a systematic expansion procedure in E for a system in d = 4 - E dimen sions was followed by a cascade of calculations of critical quantities as a function of d and of the order-parameter dimensionality n.Springer-Verlag KG, Sachsenplatz 4-6, 1201 Wien 236 pp. Englisch. Seller Inventory # 9783642818271
Quantity: 1 available