This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student’s distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student’s t-marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student’s t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar’s theorem are explained.
"synopsis" may belong to another edition of this title.
Prof. Grigelionis is a senior research fellow at the Institute of Mathematics and Informatics of Vilnius University, member of the Lithuanian Academy of Sciences and the International Statistical Institute. He has done extensive research in stochastic analysis and its applications. These include the semimartingale characterisation of stochastic processes with conditionally independent increments and solutions of stochastic Ito's equations, stochastic nonlinear filtering equations, optimal stopping of stochastic processes - joint research with A. Shiryaev - criteria of weak convergence of stochastic processes - joint research with R. Mikulevičius - etc. His current research topics are the properties of mixed Gaussian distributions and related stochastic processes.
This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student’s distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student’s t-marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student’s t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar’s theorem are explained.
"About this title" may belong to another edition of this title.
£ 1.96 shipping within U.S.A.
Destination, rates & speedsSeller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9783642311451
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 18483462-n
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Students distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Levy processes as Thorin subordinated Gaussian Levy processes. A broad class of one-dimensional, strictly stationary diffusions with the Students t-marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Levy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Students t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Levy type processes, the notion of Levy copulas and the related analogue of Sklars theorem are explained. Using the independently scattered random measures generated by the bi-variate centred Student-Levy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Students t- marginals and the arbitrary correlation structure are defined. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783642311451
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 18483462
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642311451_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9783642311451
Quantity: 10 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 18483462-n
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 18483462
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student's distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student's t -marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student's t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar's theorem are explained. 112 pp. Englisch. Seller Inventory # 9783642311451
Quantity: 2 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. 2012. Paperback. . . . . . Seller Inventory # V9783642311451
Quantity: 15 available