The second half of the twentieth century and the beginning of the twenty ?rst have been characterized by the most impressive industrial revolution ever seen. In - proximately 40years, the complexity of integrated circuits (ICs) has increased by a 9 factor of 10 , with a corresponding reduction of the cost per bit by eight orders of magnitude. Not only has this evolution allowed dramatic progress in allscienti?c ?elds (large computers, space probes, etc.), but also has fueled the economic development with the raise of new markets (personal computers, cellular phones, etc.) and even social revolutions (world wide web, global village, etc.). In last years, however, the situation has signi?cantly changed: the continuous scaling down of device size has eventually brought the IC major technique, p- tolithography, to its limits. Overcoming its original limits has been proved to be possible, but the price to pay for that has changed the playing rules – while at the beginning of the IC history the evolution was driven by technology, now it is driven by economy, the cost of a medium size production plant being in the range of a few billion dollars.
"synopsis" may belong to another edition of this title.
Gianfranco ("GF") Cerofolini (degree in Physics from the University of Milan, 1970) is visiting researcher at the University of Milano-Bicocca. His major interests are addressed to the physical limits of miniaturization and to the 'emergence' of higher-level phenomena from the underlying lower-level substrate (measurement in quantum mechanics, life in biological systems, etc.).
Although his research activity has been carried out in the industry (vacuum: SAES Getters; telecommunication: Telettra; chemistry and energetics: ENI; integrated circuits: STMicroelectronics), he has had frequent collaborations with academic centers (University of Lublin, IMEC, Stanford University, City College of New York, several Italian Universities), has been lecturer in a few Universities (Pisa, Modena, and Polytechnic of Milan), and currently is lecturer at the University of Milano-Bicocca.
His research has covered several areas: adsorption, biophysics, CMOS processing (oxidation, diffusion, ion implantation, gettering), electronic and optical materials, theory of acidity, and nanoelectronics.
A gettering technique of widespread use in microelectronics, the complete setting of ST's first silicon-gate CMOS process, the development of a process for low-fluence SOI, and the identification of a strategy for molecular electronics via a conservative extension of the existing microelectronic technology, are among his major industrial achievements. His main scientific results range from the preparation and characterization of ideal silicon p-n junctions and the discovery of a mechanism therein of pure generation without recombination, to the theoretical description of layer-by-layer oxidation at room temperature of silicon, and to the development of original mathematical techniques for the description of adsorption on heterogeneous or soft surfaces.
The results of his activity have been published in approximately 300 articles, chapters to books, and encyclopaedic items, and in a score of patents.
The evolution of the microelectronics is controlled by the idea of scaling. However, the scaling of the device size below 10 nm is expected to be impossible because of physical, technological and economic reasons. Fundamental considerations (based on Heisenberg's principle, Schrödinger equation, decoherence of quantum states, and Landauer limit) suggest that a length scale of a few nanometers is possible. On this length scale, reconfigurable molecules (via redox or internal excitation processes) seem to be suitable for that. Moreover, crossbar with cross-point density in the range 1010--1011 cm-² can already be prepared with existing methods, and such methods permit the link of nanoscopic cross-points to lithographically accessible contacts. The structures for molecular electronics deal with molecules. Although this subject is highly interdisciplinary (covering quantum and statistical mechanics, supramolecular chemistry, chemistry of surfaces, and silicon technology and devices), the book is intended to be self-contained providing in appendices the necessary side knowledge.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020222004
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783642260230
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The second half of the twentieth century and the beginning of the twenty rst have been characterized by the most impressive industrial revolution ever seen. In - proximately 40years, the complexity of integrated circuits (ICs) has increased by a 9 factor of 10 , with a corresponding reduction of the cost per bit by eight orders of magnitude. Not only has this evolution allowed dramatic progress in allscienti c elds (large computers, space probes, etc.), but also has fueled the economic development with the raise of new markets (personal computers, cellular phones, etc.) and even social revolutions (world wide web, global village, etc.). In last years, however, the situation has signi cantly changed: the continuous scaling down of device size has eventually brought the IC major technique, p- tolithography, to its limits. Overcoming its original limits has been proved to be possible, but the price to pay for that has changed the playing rules - while at the beginning of the IC history the evolution was driven by technology, now it is driven by economy, the cost of a medium size production plant being in the range of a few billion dollars. 224 pp. Englisch. Seller Inventory # 9783642260230
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 224. Seller Inventory # 2614418673
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Deals with the miniaturization of electronic devices towards the nanoscale Presents the concept of nanolithography and nanodevices A reference work for researchers and engineers alikeGianfranco ( GF ) Cerofolini (degree in Physic. Seller Inventory # 5054099
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 224 84 Illus. (54 Col.). Seller Inventory # 11255086
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 2009 edition. 221 pages. 9.25x6.10x0.53 inches. In Stock. Seller Inventory # x-3642260233
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 224. Seller Inventory # 1814418683
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642260230_new
Quantity: Over 20 available
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Nanoscale Devices | Fabrication, Functionalization, and Accessibility from the Macroscopic World | Gianfranco Cerofolini | Taschenbuch | xvi | Englisch | 2012 | Springer Vieweg | EAN 9783642260230 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Seller Inventory # 106590921