Preface.- 1.Gaussian Vectors and Distributions.- 2.Examples of Gaussian Vectors, Processes and Distributions.- 3.Gaussian White Noise and Integral Representations.- 4.Measurable Functionals and the Kernel.- 5.Cameron-Martin Theorem.- 6.Isoperimetric Inequality.- 7.Measure Concavity and Other Inequalities.- 8.Large Deviation Principle.- 9.Functional Law of the Iterated Logarithm.- 10.Metric Entropy and Sample Path Properties.- 11.Small Deviations.- 12.Expansions of Gaussian Vectors.- 13.Quantization of Gaussian Vectors.- 14.Invitation to Further Reading.- References.
"synopsis" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want