Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is determined up to mv + nv , where v and v are complex numbers, and m and n are 1 2 1 2 integers. The set of linear combinations mv+ nv forms a lattice H C C, and 1 2 so to each elliptic integral Aw we can associate the torus C/ H. 2 On the other hand, equation (1) defines a curve in the affine plane C = 2 2 {(z,w)}. Let us complete C2 to the projective plane lP' = lP' (C) by the addition of the "line at infinity", and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP' (which can also be viewed as a Riemann surface). Such a curve is called an elliptic curve.
"synopsis" may belong to another edition of this title.
The first contribution of this EMS volume on the subject of complex algebraic geometry touches upon many of the central problems in this vast and very active area of current research. While it is much too short to provide complete coverage of this subject, it provides a succinct summary of the areas it covers, while providing in-depth coverage of certain very important fields - some examples of the fields treated in greater detail are theorems of Torelli type, K3 surfaces, variation of Hodge structures and degenerations of algebraic varieties.
The second part provides a brief and lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties, and partial differential equations of mathematical physics. The paper discusses the work of Mumford, Novikov, Krichever, and Shiota, and would be an excellent companion to the older classics on the subject by Mumford.
"About this title" may belong to another edition of this title.
£ 25.86 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Sizzler Texts, SAN GABRIEL, CA, U.S.A.
Hardcover. Condition: New. Dust Jacket Condition: New. 1st Edition. **INTERNATIONAL EDITION** Read carefully before purchase: This book is the international edition in mint condition with the different ISBN and book cover design, the major content is printed in full English as same as the original North American edition. The book printed in black and white, generally send in twenty-four hours after the order confirmed. All shipments contain tracking numbers. Great professional textbook selling experience and expedite shipping service. Seller Inventory # ABE-8061205813
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642081187_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties. An excellent companion to the older classics on the subject. 284 pp. Englisch. Seller Inventory # 9783642081187
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieti. Seller Inventory # 5047165
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is determined up to mv + nv , where v and v are complex numbers, and m and n are 1 2 1 2 integers. The set of linear combinations mv+ nv forms a lattice H C C, and 1 2 so to each elliptic integral Aw we can associate the torus C/ H. 2 On the other hand, equation (1) defines a curve in the affine plane C = 2 2 {(z,w)}. Let us complete C2 to the projective plane lP' = lP' (C) by the addition of the 'line at infinity', and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP' (which can also be viewed as a Riemann surface). Such a curve is called an elliptic curve. Seller Inventory # 9783642081187
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Starting with the end of the seventeenth century, one of the most interesting directions in mathematics (attracting the attention as J. Bernoulli, Euler, Jacobi, Legendre, Abel, among others) has been the study of integrals of the form r dz l Aw(T) = -, TO W where w is an algebraic function of z. Such integrals are now called abelian. Let us examine the simplest instance of an abelian integral, one where w is defined by the polynomial equation (1) where the polynomial on the right hand side has no multiple roots. In this case the function Aw is called an elliptic integral. The value of Aw is determined up to mv + nv , where v and v are complex numbers, and m and n are 1 2 1 2 integers. The set of linear combinations mv+ nv forms a lattice H C C, and 1 2 so to each elliptic integral Aw we can associate the torus C/ H. 2 On the other hand, equation (1) defines a curve in the affine plane C = 2 2 {(z,w)}. Let us complete C2 to the projective plane lP' = lP' (C) by the addition of the 'line at infinity', and let us also complete the curve defined 2 by equation (1). The result will be a nonsingular closed curve E C lP' (which can also be viewed as a Riemann surface). Such a curve is called an elliptic curve.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch. Seller Inventory # 9783642081187
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020216819
Quantity: Over 20 available