Mathematics develops both due to demands of other sciences and due to its internal logic. The latter fact explains the attention of mathematicians to many problems, which are in close connection with basic mathematical notions, even if these problems have no direct practical applications. It is well known that the space of constant curvature is one of the basic geometry notion [208], which induced the wide ?eld for investigations. As a result there were found numerous connections of constant curvature spaces with other branches of mathematics, for example, with integrable partial dif- 1 ferential equations [36, 153, 189] and with integrable Hamiltonian systems [141]. Geodesic ?ows on compact surfaces of a constant negative curvature (with the genus 2) generate many test examples for ergodic theory (see also 3 [183] and the bibliography therein). The hyperbolic space H (R) is the space of velocities in special relativity (see Sect. 7.4.1) and also arises as space-like sections in some models of general relativity.
"synopsis" may belong to another edition of this title.
The present monograph gives a short and concise introduction to classical and quantum mechanics on two-point homogenous Riemannian spaces, with empahsis on spaces with constant curvature. Chapter 1-4 provide the basic notations from differential geometry for studying two-body dynamics in these spaces. Chapter 5 deals with the problem of finding explicitly invariant expressions for the two-body quantum Hamiltonian. Chapter 6 addresses one-body problems in a central potential. Chapter 7 studies the classical counterpart of the quantum system of chapter 5. Chapter 8 investigates some applications in the quantum realm, namely for the coulomb and oscillator potentials.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020216065
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is an introduction to classical and quantum mechanics on two-point homogenous Riemannian spaces, empahsizing spaces with constant curvature. Chapters 1-4 provide basic notations for studying two-body dynamics. Chapter 5 deals with the problem of finding explicitly invariant expressions for the two-body quantum Hamiltonian. Chapter 6 addresses one-body problems in a central potential. Chapter 7 investigates the classical counterpart of the quantum system introduced in Chapter 5. Chapter 8 discusses applications in the quantum realm. 276 pp. Englisch. Seller Inventory # 9783642071270
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 276. Seller Inventory # 262130300
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 276 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 5717667
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 276. Seller Inventory # 182130294
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642071270_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a concise introduction to classical and quantum mechanics on two-point homogenous Riemannian spacesReviews basic notations for studying two-body dynamicsAddresses one-body problems in a central potentialDiscusses application. Seller Inventory # 5046208
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783642071270
Quantity: 10 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Mathematics develops both due to demands of other sciences and due to its internal logic. The latter fact explains the attention of mathematicians to many problems, which are in close connection with basic mathematical notions, even if these problems have no direct practical applications. It is well known that the space of constant curvature is one of the basic geometry notion [208], which induced the wide eld for investigations. As a result there were found numerous connections of constant curvature spaces with other branches of mathematics, for example, with integrable partial dif- 1 ferential equations [36, 153, 189] and with integrable Hamiltonian systems [141]. Geodesic ows on compact surfaces of a constant negative curvature (with the genus 2) generate many test examples for ergodic theory (see also 3 [183] and the bibliography therein). The hyperbolic space H (R) is the space of velocities in special relativity (see Sect. 7.4.1) and also arises as space-like sections in some models of general relativity.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch. Seller Inventory # 9783642071270
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Mathematics develops both due to demands of other sciences and due to its internal logic. The latter fact explains the attention of mathematicians to many problems, which are in close connection with basic mathematical notions, even if these problems have no direct practical applications. It is well known that the space of constant curvature is one of the basic geometry notion [208], which induced the wide eld for investigations. As a result there were found numerous connections of constant curvature spaces with other branches of mathematics, for example, with integrable partial dif- 1 ferential equations [36, 153, 189] and with integrable Hamiltonian systems [141]. Geodesic ows on compact surfaces of a constant negative curvature (with the genus 2) generate many test examples for ergodic theory (see also 3 [183] and the bibliography therein). The hyperbolic space H (R) is the space of velocities in special relativity (see Sect. 7.4.1) and also arises as space-like sections in some models of general relativity. Seller Inventory # 9783642071270