In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods.
This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies.
This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.
"synopsis" may belong to another edition of this title.
In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods.
This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies.
This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.
"About this title" may belong to another edition of this title.
£ 10.64 shipping from United Kingdom to U.S.A.
Destination, rates & speedsSeller: Phatpocket Limited, Waltham Abbey, HERTS, United Kingdom
Condition: Like New. Used - Like New. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Seller Inventory # Z1-X-020-01430
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020214146
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design. 480 pp. Englisch. Seller Inventory # 9783642025372
Quantity: 2 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642025372_new
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design. Seller Inventory # 9783642025372
Quantity: 1 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Hardcover. Condition: Like New. Like New. book. Seller Inventory # ERICA77336420253746
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 480. Seller Inventory # 261372307
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 457 pages. 9.25x6.25x0.75 inches. In Stock. Seller Inventory # x-3642025374
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 480 93 Illus. Seller Inventory # 6508364
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 480. Seller Inventory # 181372313
Quantity: 4 available