This text grew up from lecturcs givcn at he t University of Rennes I during the academic year 1988-1989. The main topics covered arc second microlocalization along a agrangian l manifold, defined by Sjostrand in [Sj], and its application to the study of conormal sin- gularities for solutions of semilinear hyperbolic partial differential equations, developed by Lebeau [L4]. To give a quite self-contained treatment of these questions, we induded some de- velopments about FBI transformations and subanalytic geometry. The text is made oi four chapters. In he t first one, we define the Fourier-Bros-Ingolnitzer transionnation and study its main properties. The second chapter deals with second microlocalization along a lagrangian submanifold, and with upper bounds for the wave front set of traces one may obtain using it. The third chapter is devoted to formulas giving geometric upper bounds for the analytic wave front set and for the ser,ond mic:rosllpport of boundary values of ramified functions. Lastly, the fourth chapter applies the preceding methods to the derivation of theorems about the location of microlocal singularities of solutions of scmilinear wave equations with conormw data, in general geometrical situation. Every chapter begins with a short abstract of its contents, where are collected the bibliograph- ical references. Let me now thank all those who made this writing possible. First of all, Gilles Lebeau, from whom I learnt mcrol i ocal analysis, especially through lectures he gave with Yves Laurent at Ecole Normale Superieure in 1982-1983.
"synopsis" may belong to another edition of this title.
During the last ten years, FBI transformation and second microlocalization have been used by several authors to solve different problems in the theory of linear or nonlinear partial differential equations. The aim of this book is to give an introduction to these topics, in the spirit of the work of Sjostrand, and to present their recent application to the propagation of conormal singularities for solutions of seminlinear hyperbolic equations, due to Lebeau. The text is quite self-contained and provides a useful entry to the subject and a bridging link to more specialized papers.
"About this title" may belong to another edition of this title.
£ 6.03 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: Antiquariat Bookfarm, Löbnitz, Germany
102 pages Ex-Library book in good condition. 9783540557647 Sprache: Englisch Gewicht in Gramm: 181. Seller Inventory # 1159929
Quantity: 1 available
Seller: Antiquariat Bookfarm, Löbnitz, Germany
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03269 3540557644 Sprache: Englisch Gewicht in Gramm: 550. Seller Inventory # 2489174
Quantity: 1 available
Seller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Seiten: 108 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 4431049/202
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783540557647_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9783540557647
Quantity: 10 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This text grew up from lecturcs givcn at he t University of Rennes I during the academic year 1988-1989. The main topics covered arc second microlocalization along a agrangian l manifold, defined by Sjostrand in [Sj], and its application to the study of conormal sin gularities for solutions of semilinear hyperbolic partial differential equations, developed by Lebeau [L4]. To give a quite self-contained treatment of these questions, we induded some de velopments about FBI transformations and subanalytic geometry. The text is made oi four chapters. In he t first one, we define the Fourier-Bros-Ingolnitzer transionnation and study its main properties. The second chapter deals with second microlocalization along a lagrangian submanifold, and with upper bounds for the wave front set of traces one may obtain using it. The third chapter is devoted to formulas giving geometric upper bounds for the analytic wave front set and for the ser,ond mic:rosllpport of boundary values of ramified functions. Lastly, the fourth chapter applies the preceding methods to the derivation of theorems about the location of microlocal singularities of solutions of scmilinear wave equations with conormw data, in general geometrical situation. Every chapter begins with a short abstract of its contents, where are collected the bibliograph ical references. Let me now thank all those who made this writing possible. First of all, Gilles Lebeau, from whom I learnt mcrol i ocal analysis, especially through lectures he gave with Yves Laurent at Ecole Normale Superieure in 1982-1983. 108 pp. Englisch. Seller Inventory # 9783540557647
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text grew up from lecturcs givcn at he t University of Rennes I during the academic year 1988-1989. The main topics covered arc second microlocalization along a agrangian l manifold, defined by Sjostrand in [Sj], and its application to the study of conormal sin gularities for solutions of semilinear hyperbolic partial differential equations, developed by Lebeau [L4]. To give a quite self-contained treatment of these questions, we induded some de velopments about FBI transformations and subanalytic geometry. The text is made oi four chapters. In he t first one, we define the Fourier-Bros-Ingolnitzer transionnation and study its main properties. The second chapter deals with second microlocalization along a lagrangian submanifold, and with upper bounds for the wave front set of traces one may obtain using it. The third chapter is devoted to formulas giving geometric upper bounds for the analytic wave front set and for the ser,ond mic:rosllpport of boundary values of ramified functions. Lastly, the fourth chapter applies the preceding methods to the derivation of theorems about the location of microlocal singularities of solutions of scmilinear wave equations with conormw data, in general geometrical situation. Every chapter begins with a short abstract of its contents, where are collected the bibliograph ical references. Let me now thank all those who made this writing possible. First of all, Gilles Lebeau, from whom I learnt mcrol i ocal analysis, especially through lectures he gave with Yves Laurent at Ecole Normale Superieure in 1982-1983. Seller Inventory # 9783540557647
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 108 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 5862830
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 108. Seller Inventory # 263066481
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 108. Seller Inventory # 183066491
Quantity: 4 available