Data Mining and Knowledge Discovery with Evolutionary Algorithms (Natural Computing Series) - Hardcover

Freitas, Alex A.

 
9783540433316: Data Mining and Knowledge Discovery with Evolutionary Algorithms (Natural Computing Series)

Synopsis

This book addresses the integration of two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increas­ ingly popular in the last few years, and their integration is currently an area of active research. In essence, data mining consists of extracting valid, comprehensible, and in­ teresting knowledge from data. Data mining is actually an interdisciplinary field, since there are many kinds of methods that can be used to extract knowledge from data. Arguably, data mining mainly uses methods from machine learning (a branch of artificial intelligence) and statistics (including statistical pattern recog­ nition). Our discussion of data mining and evolutionary algorithms is primarily based on machine learning concepts and principles. In particular, in this book we emphasize the importance of discovering comprehensible, interesting knowledge, which the user can potentially use to make intelligent decisions. In a nutshell, the motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions (rules or another form of knowl­ edge representation). In contrast, most rule induction methods perform a local, greedy search in the space of candidate rules. Intuitively, the global search of evolutionary algorithms can discover interesting rules and patterns that would be missed by the greedy search.

"synopsis" may belong to another edition of this title.

From the Back Cover

This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an area of active research. In general, data mining consists of extracting knowledge from data. In this book we particularly emphasize the importance of discovering comprehensible and interesting knowledge, which is potentially useful to the reader for intelligent decision making. In a nutshell, the motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions (rules or another form of knowledge representation). In contrast, most rule induction methods perform a local, greedy search in the space of candidate rules. Intuitively, the global search of evolutionary algorithms can discover interesting rules and patterns that would be missed by the greedy search.
This book presents a comprehensive review of basic concepts on both data mining and evolutionary algorithms and discusses significant advances in the integration of these two areas. It is self-contained, explaining both basic concepts and advanced topics.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9783642077630: Data Mining and Knowledge Discovery with Evolutionary Algorithms (Natural Computing Series)

Featured Edition

ISBN 10:  3642077633 ISBN 13:  9783642077630
Publisher: Springer, 2012
Softcover